ON A CLASS OF CYCLIC CODES
About this article
Received: 25/09/20                Revised: 03/11/20                Published: 30/11/20Abstract
For any odd prime such that the structures and duals of cyclic codes of length over are completely determined in term of their generator polynomials. Dual codes of all cyclic of length over are also investigated. Furthermore, we give the number of codewords in each of those cyclic codes. We also obtain the number of cyclic codes of length over
Keywords
Full Text:
PDF (Tiếng Việt)References
[1]. S. D. Berman, “Semisimple cyclic and Abelian codes. II,” Kibernetika (Kiev), vol. 3, pp. 21-30, 1967.
[2]. J. L. Massey, D. J. Costello, and J. Justesen, “Polynomial weights and code constructions,” IEEE Trans. Inform. Theory, vol. 19, pp. 101-110, 1973.
[3]. G. Falkner, B. Kowol, W. Heise, and E. Zehendner, “On the existence of cyclic optimal codes,” Atti Sem. Mat. Fis. Univ. Modena, vol. 28, pp. 326-341, 1979.
[4]. R. M. Roth, and G. Seroussi, “On cyclic MDS codes of length q over GF(q),” IEEE Trans. Inform. Theory, vol. 32, pp. 284-285, 1986.
[5]. G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seemann, “On repeated-root cyclic codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 337-342, 1991.
[6]. J. H. van Lint, “Repeated-root cyclic codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 343-345, 1991.
[7]. C. S. Nedeloaia, “Weight distributions of cyclic self-dual codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 1582-1591, 2003.
[8]. L.-Z. Tang, C. B. Soh, and E. Gunawan, “A note on the q-ary image of a q É m-ary repeated-root cyclic code},” IEEE Trans. Inform. Theory, vol. 43, pp. 732-737, 1997.
[9]. B. Chen, H. Q. Dinh, H. Liu, and L.Wang, “Constacyclic codes of lengthover ,” Finite Fields & Appl., vol. 36, pp. 108-130, 2016.
[10]. H. Q. Dinh, “Constacyclic codes of length over R,” J. Algebra, vol. 324, pp. 940-950, 2010.
Refbacks
- There are currently no refbacks.





