INFLUENCE OF THE ELECTRONIC MOBILITY ON THE EXCITONIC INSULATOR STATE IN RARE-EARTH CHALCOGENIDES | Hậu | TNU Journal of Science and Technology

INFLUENCE OF THE ELECTRONIC MOBILITY ON THE EXCITONIC INSULATOR STATE IN RARE-EARTH CHALCOGENIDES

About this article

Received: 08/10/21                Revised: 09/11/21                Published: 10/11/21

Authors

1. Nguyen Thi Hau, Hanoi University of Mining and Geology
2. Le Tien Ha, TNU – University of Sciences
3. Do Thi Hong Hai Email to author, Hanoi University of Mining and Geology

Abstract


The influence of the electronic mobility on the excitonic insulator state in the rare-earth chalcogenides was investigated through the extended Falicov–Kimball model. By applying the Hartree-Fock approximation, we have obtained a set of self-consistent equations determining expectation values and the excitonic susceptibility function in the model. We have considered the effect of the electronic mobility on the excitonic insulator state via analyzing the excitonic susceptibility function. The results confirm the role of the  f-electron mobility in the formation of the excitonic insulator state in rare-earth chalcogenides at sufficiently low temperature when the external pressure is large enough.

Keywords


The extended Falicov–Kimball model; Hartree-Fock approximation; Excitonic insulator; The rare-earth chalcogenide; Excitonic susceptibility

References


[1] N. F. Mott, “The transition to the metallic state,” Philosophical Magazine, vol. 6, pp. 287-309, 1961.

[2] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, “Colloquium: Excitons in atomically thin transition metal dichalcogenides,” Reviews of Modern Physics, vol. 90, 2018, Art. no. 021001.

[3] F. Katsch, M. Selig, and A. Knorr, “Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors,” Physical Review Letters, vol. 124, 2020, Art. no. 257402.

[4] H. Yu and W. Yao, “Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moiré superlattices,” Physical Review X, vol. 11, 2021, Art. no. 021042.

[5] J. C. G. Henriques, N. A. Mortensen, and N. M. R. Peres, “Analytical description of the 1s–exciton linewidth temperature-dependence in transition metal dichalcogenides,” Physical Review B, vol. 103, 2021, Art. no. 235402.

[6] H. Liu, A. Pau, and D. K. Efimkin, “Hybrid dark excitons in monolayer MoS2,” Physical Review B, vol. 104 , 2021, Art. no. 165411.

[7] M. Förg, L. Colombier, R. K. Patel, J. Lindlau, A. D. Mohite, H. Yamaguchi, D. Hunger, and A. Högele, “Cavity-control of bright and dark interlayer excitons in van der Waals heterostructures,” Nature Communications, vol. 10, 2019, Art. no. 3697.

[8] F. Wang, C. Wang, A. Chaves, C. Song, G. Zhang, A. Huang, Y. Lei, Q. Xing, L. Mu, Y. Xie, and H. Yan, “Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus,” Nature communications, vol. 12, 2021, Art. no. 5628.

[9] K. Ludwiczak, A. K. Dąbrowska, J. Binder, M. Tokarczyk, J. Iwański, B. Kurowska, J. Turczyński, G. Kowalski, R. Bożek, R. Stępniewski, W. Pacuski, and A. Wysmołek, “Heteroepitaxial growth of high optical quality, wafer-scale van der Waals heterostrucutres,” ACS Applied materials and interfaces, vol. 13, no. 40, pp. 47904-47911, 2021.

[10] B. Bucher, P. Steiner, and P. Wachter, “Excitonic insulator phase in TmSe0.45Te0.55,” Physical Review Letters, vol. 67, 1991, Art. no. 2717.

[11] P. Wachter, “Exciton condensation in an intermediate valence compound: TmSe0.45Te0.55,” Solid State Communications, vol. 118, pp. 645-650, 2001.

[12] D. Ihle, M. Pfafferott, E. Burovski, F. X. Bronold, and H. Fehske, “Bound state formation and nature of the excitonic insulator phase in the extended Falicov-Kimball model,” Physical Review B, vol. 78, 2008, Art. no. 193103.

[13] N. V. Phan, H. Fehske, and K. W. Becker, “Excitonic resonances in the 2D extended Falicov-Kimball model,” Europhysics Letter, vol. 95, 2011, Art. no. 17006.

[14] B. Zenker, D. Ihle, F. X. Bronold, and H. Fehske, “On the existence of the excitonic insulator phase in the extended Falicov-Kimball model: a SO(2)invariant slave-boson approach,” Physical Review B, vol. 81, 2010, Art. no. 115122.

[15] R. Ramirez, L. M. Falicov, and J. C. Kimball, “Metal-insulator transitions: A simple theoretical model,” Physical Review B, vol. 2, 1970, Art. no. 3383.

[16] T. H. H. Do, T. H. Nguyen, and Q. A. Ho, “Temperature effect on the excitonic condensation state in the extended Falicov – Kimball model including electron-phonon interaction,” (in Vietnamese), Journal minitary science and technology, special issue, pp. 204-209, April 2018.

[17] H. H. T. Do and V. N. Phan, “Spectrial properties in the extended Falicov-Kimball model involving the electron-phonon interaction: Excitonic insulator state formation,” (in Vietnamese), DTU Journal of Science and Technology, vol. 6, no. 31, pp. 89-94, 2018.

[18] H. H. T. Do and V. N. Phan, “Phase diagram of excitonic condensation state in the extended Falicov-Kimball model involving the electron-phonon interaction,” (in Vietnamese), DTU Journal of Science and Technology, vol. 6, no. 31, pp. 95-100, 2018.

[19] T. H. H. Do, D. H. Bui, and V. N. Phan, “Phonon effects in the excitonic condensation induced in the extended Falicov-Kimball model,” Europhysics Letters, vol. 119, no. 4, 2017, Art. no. 47003.

[20] T. H. H. Do, H. N. Nguyen, and V. N. Phan, “Thermal Fluctuations in the Phase Structure of the Excitonic Insulator Charge Density Wave State in the Extended Falicov-Kimball Model,” Journal of Electronic Materials, vol. 48, pp. 2677-2684, 2019.

[21] P. Wachter, “Exciton Condensation and Superfluidity in TmSe0.45Te0.55,” Advances in Materials Physics and Chemistry, vol. 8, no. 3, pp. 120-142, 2018.

[22] T. H. H. Do and T. H. Nguyen, “Influence of the electronic mobility on the excitonic insulator state in semimetal materials,” (in Vietnamese), Journal minitary science and technology, special issue, pp. 57-62, April 2018.




DOI: https://doi.org/10.34238/tnu-jst.5132

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved