STUDY ON IN VITRO CURCUMIN RELEASE FROM MICRO CURCUMIN BEADS
About this article
Received: 25/11/21                Revised: 13/01/22                Published: 18/01/22Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] B. Layek and S. Mandal, “Natural polysaccharides for controlled delivery of oral therapeutics: a recent update,” Carbohydr. Polym., vol. 230, 2020, Art. no. 115617, doi: 10.1016/j.carbpol.2019.115617.
[2] D. Li, J. Li, H. Dong, X. Li, J. Zhang, S. Ramaswamy, and F. Xu, “Pectin in biomedical and drug delivery applications: A review,” Int. J. Biol. Macromol., vol. 185, pp. 49-65, 2021, doi: 10.1016/j.ijbiomac.2021.06.088.
[3] Q. Zhang, H. Wang, Z. Feng, Z. Lu, C. Su, Y. Zhao, J. Yu, A. V Dushkin, and W. Su, “Preparation of pectin-tannic acid coated core-shell nanoparticle for enhanced bioavailability and antihyperlipidemic activity of curcumin,” Food Hydrocoll., vol. 119, 2021, Art. no. 106858, doi: 10.1016/j.foodhyd.2021.106858.
[4] S. Das, “Pectin based multi-particulate carriers for colon-specific delivery of therapeutic agents,” Int. J. Pharm., vol. 605, 2021, Art. no. 120814, doi: 10.1016/j.ijpharm.2021.120814.
[5] A. Dogan Ergin, Z. S. Bayindir, A. T. Ozcelikay, and N. Yuksel, “A novel delivery system for enhancing bioavailability of S-adenosyl-l-methionine: Pectin nanoparticles-in-microparticles and their in vitro - in vivo evaluation’,” J. Drug Deliv. Sci. Technol., vol. 61, 2021, Art. no. 102096, doi: 10.1016/j.jddst.2020.102096.
[6] H. H. Gadalla, I. El-Gibaly, G. M. Soliman, F. A. Mohamed, and A. M. El-Sayed, “Amidated pectin/sodium carboxymethylcellulose microspheres as a new carrier for colonic drug targeting: Development and optimization by factorial design,” Carbohydr. Polym., vol. 153, pp. 526-534, 2016, doi: 10.1016/j.carbpol.2016.08.018.
[7] T. Lee and Y. H. Chang, “Structural, physicochemical, and in-vitro release properties of hydrogel beads produced by oligochitosan and de-esterified pectin from yuzu (Citrus junos) peel as a quercetin delivery system for colon target,” Food Hydrocoll., vol. 108, 2020, Art. no. 106086, doi: 10.1016/j.foodhyd.2020.106086.
[8] R. Deshmukh, R. K. Harwansh, S. Das Paul, and R. Shukla, “Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease,” J. Drug Deliv. Sci. Technol., vol. 55, 2020, Art. no. 101495, doi: 10.1016/j.jddst.2019.101495.
[9] D. H. Nguyen and T. T. N. Nguyen, “Study on encapsulation of micro curcumin using ionotropic gelation method,” TNU Journal of Science and Technology, vol. 226, no. 14, pp. 222-229, 2021, doi: 10.34238/tnu-jst.5115.
[10] M. L. Bruschi, Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, 2015.
[11] V. Pillay and R. Fassihi, “In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract: II. Physicochemical characterization of calcium–alginate, calcium–pectinate and calcium–alginate–pectinate pellets,” J. Control. Release, vol. 59, no. 2, pp. 243-256, 1999, doi: 10.1016/S0168-3659(98)00197-7.
[12] O. Naksuriya, M. J. van Steenbergen, J. S. Torano, S. Okonogi, and W. E. Hennink, “A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles,” AAPS J., vol. 18, no. 3, pp. 777-787, May 2016, doi: 10.1208/s12248-015-9863-0.
[13] S. -W. Seo, H. -K. Han, M. -K. Chun, and H. -K. Choi, “Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier,” Int. J. Pharm., vol. 424, no. 1-2, pp. 18-25, Mar. 2012, doi: 10.1016/j.ijpharm.2011.12.051.
[14] J. Siepmann and F. Siepmann, “Mathematical modeling of drug delivery,” Int. J. Pharm., vol. 364, no. 2, pp. 328-343, 2008, doi: 10.1016/j.ijpharm.2008.09.004.DOI: https://doi.org/10.34238/tnu-jst.5295
Refbacks
- There are currently no refbacks.





