ON THE SOLUTION SET OF GENERALIZED QUASI-HOMOGENEOUS COMPLEMENTARITY PROBLEMS
About this article
Received: 09/12/21                Revised: 19/04/22                Published: 21/04/22Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] S. C. Billups and K. G. Murty, “Complementarity problems,” J. Computational and Applied Mathematics, vol. 124, pp. 303-318, 2000.
[2] L. Ling, C. Ling, and H. He, “Properties of the solution set of generalized polynomial complementarity problems,” Pac. J.Optim., vol. 16, pp. 155-174, 2020.
[3] L. Ling, H. He, and C. Ling, “On error bounds of polynomial complementarity problems with structured tensors,” Optimization, vol. 67, pp. 341-358, 2018.
[4] M. S. Gowda, “Polynomial complementarity problems,” Pac.J.Optim., vol. 13, pp. 227-241, 2017.
[5] G. Isac, V. Bulavski, and V. Kalashnikov, “Exceptional families, topological degree and complementarity problems,” J.Global Optim., vol. 10, pp. 207-225, 1997.
[6] G. Isac and A. Carbone, “Exceptional families of elements for continuous functions: some applications to complimentarity theory,” J.Global Optim., vol. 15, pp. 181-196, 1999.
[7] V. V. Kalashnicov and G. Isac, “Solvability of implicit complementarity problems,” Ann. Oper. Res., vol. 116, pp. 199-221, 2002.
[8] X. L. Bai, Z. H. Huang, and Y. Wang, “Global uniqueness and solvability for tensor complementarity problems,” J. Optim. Theory Appl., vol. 170, pp. 72-84, 2016.
DOI: https://doi.org/10.34238/tnu-jst.5337
Refbacks
- There are currently no refbacks.





