RESEARCH AND FABRICATION OF GRAPHITE/NANOSILIC/NANOCARBONCOMPOSITE FOR ANODE ELECTRODES IN LITHIUM ION BATTERIES
About this article
Received: 05/01/22                Revised: 19/04/22                Published: 21/04/22Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] U. Kasavajjula, C. Wang, and A. J. Appleby, “Nano- and bulk-silicon- based insertion anodes for lithium-ion secondary cells,” J. Powder Sources, vol. 163, pp. 1003-1039, 2007, doi: 10.1016/j.jpowsour.2006.09.084
[2] P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, and S. Dou, “Recent progress on silicon-based anode materials for practical lithium-ion battery applications,” Energy Storage Materials, vol. 15, pp. 422-446, November 2018, doi: 10.1016/j.ensm.2018.07.014
[3] S. Chae, S. Choi, N. Kim, J. Sung, and J. Cho, “Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries,” Angewandte Chemie International Edition, vol. 59, no. 1, pp. 110-135, 2019, doi: 10.1002/anie.201902085.
[4] J. Wu, Y. Cao, H. Zhao, J. Mao, and Z. Guo, “The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries,” Carbon Energy, vol. 1, no. 1, pp. 57-76, 2019, doi: 10.1002/cey2.2.
[5] M. Li, J. Lu, Z. Chen, and K. Amine, “30 years of lithium‐ion batteries,” Advanced Materials, vol. 30, no. 33, 2018, Art. no. 1800561, doi: 10.1002/adma.201800561.
[6] M. Lowe, S. Tokuoka, T. Trigg, and G. Gereffi, Lithium-ion batteries for electric vehicles. The US Value Chain, Technical report, 2010, doi: 10.13140/RG.2.1.1421.0324.
[7] B. Diouf and R. Pode, “Potential of lithium-ion batteries in renewable energy,” Renewable Energy, vol. 76, pp. 375-380, 2015, doi: 10.1016/j.renene.2014.11.058.
[8] M. Yu et al., “Current Li-ion battery technologies in electric vehicles and opportunities for advancements,” Energies, vol. 12.6, 2019, Art. no. 1074, doi: 10.3390/en12061074.
[9] C. Mao, M. Wood, L. David, S. J. An, Y. Sheng, Z. Du, H. M. Meyer, R. E. Ruther, and D. L. Wood, “Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries,” J. Electrochem. Soc., vol. 165, pp. A1837-A1845, 2018.
[10] Y. P. Wu, C. Jiang, C. Wan, and R. Holze, “Modified natural graphite as anode material for lithium ion batteries,” Journal of power sources, vol. 111, no. 2, pp. 329-334, September 2002, doi: 10.1016/S0378-7753(02)00349-X.
[11] J. Lai, H. Guo, X. Li, Z. Wang, X. Li, X. Zhang, S. Huang, and L. Gan, “Silicon/flake graphite/carbon anode materials prepared with different dispersants by spray-drying method for lithium ion batteries,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 5, pp. 1413-1420, May 2013, doi: 10.1016/S1003-6326(13)62611-4.
[12] L. Zhang, M. Zhang, Y. Wang, Z. Zhang, G. Kan, C. Wang, Z. Zhong, and F. Su, “Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries,” J. Mater. Chem. A, vol. 2, 2014, Art. no. 10161, doi: 10.1039/c4ta00356j.
[13] H. Cheng, J. G. Shapter, Y. Li, and G. Gao, “Recent progress of advanced anode materials of lithium-ion batteries,” Journal of Energy Chemistry, vol. 57, pp. 451-468, June 2021, doi: 10.1016/j.jechem.2020.08.056.
[14] S. Yoon, H. Kim, and S. M. Oh, “Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries,” Journal of power sources, vol. 94.1, pp. 68-73, 2001, doi: 10.1016/S0378-7753(00)00601-7.
[15] W. Alkarmo, A. Aqil, F. Ouhib, J. Thomassin, D. Mazouzi, D. Guyomard, C. Detrembleur, and C. Jérôme, “Nanostructured 3D porous hybrid network of N-doped carbon, graphene and Si nanoparticles as an anode material for Li-ion batteries,” New J. Chem., vol. 41, 2017, Art. no. 10555, doi: 10.1039/C7NJ02154B.
[16] J. Lu, D. Wang, J. Liu, G. Qian, Y. Chen, and Z. Wang, “Hollow double-layer carbon nanocage confined Si nanoparticles for high performance lithium-ion batteries,” Nanoscale Adv., vol. 2, 2020, Art. no. 3222, doi: 10.1039/D0NA00297F.
[17] P. Wu, C. Guo, J. Han, K. Yu, X. Dong, G. Yue, H. Yue, Y. Guan, and A. Liu, “Fabrication of double core–shell Si-based anode materials with nanostructure for lithium-ion battery,” RSC Adv., vol. 8, 2018, Art. no. 9094, doi: 10.1039/C7RA13606D.
[18] Q. Chen, Y. Nie, Y. Liu, J. Du, and B. Ren, “Synthesize of silicon/carbon nanosheets with NaCl template and its application as anode material of lithium-ion batteries,” J Mater Sci: Mater Electron, vol. 30, 2019, Art. no. 2442, doi: 10.1007/s10854-018-0517-8.
[19] N. Liu, J. Liu, D. Jia, Y. Huang, J. Luo, X. Mamat, Y. Yu, Y. Dong, and G. Hu, “Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries,” Energy Storage Materials, vol. 18, p. 165, 2019, doi: 10.1016/j.ensm.2018.09.019.
[20] W. Yao, J. Chen, L. Zhan, Y. Wang, and S. Yang, “Two-Dimensional Porous Sandwich-Like C/Si–Graphene–Si/C Nanosheets for Superior Lithium Storage,” ACS Appl. Mater. Interfaces, vol. 9, p. 39371, 2017, doi: 10.1021/acsami.7b11721.
[21] S. Batool, M. Idrees, J. Kong, J. Zhang, S. Kong, M. Dong, H. Hou, J. Fan, H. Wei, and Z. Guo, “Assessment of the electrochemical behaviour of silicon@carbon nanocomposite anode for lithium-ion batteries,” Journal of Alloys and Compounds, vol. 832, p. 154644, 2020, doi: 10.1016/j.jallcom.2020.154644.
[22] J. Wu, Y. Cao, H. Zhao, J. Mao, and Z. Guo, “The critical role of carbon in marrying silicon and graphite anodes for high‐energy lithium‐ion batteries,” Carbon Energy, vol. 1, no. 1, pp. 57-76, September 2019, doi: 10.1002/cey2.2.
[23] S. He, S. Huang, S. Wang, I. Mizota, X. Liu, and X. Hou, “Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications,” Energy & Fuels, vol. 35, pp. 944-964, 2021, doi: 10.1021/acs.energyfuels.0c02948.
[24] P. Ruvinskiy, I. V. Barsukov, O. Mashtalir, C. M. Reid, J. J. Wu, and Y. Gogotsi, “Nano-silicon containing composite graphitic anodes with improved cycling stability for application in high energy lithium-ion batteries,” ECS Journal of Solid State Science and Technology, vol. 2, no. 10, p. M3028, 2013, doi: 10.1149/2.006310jss.
[25] C. H. Yim, S. Niketic, N. Salem, O. Naboka, and Y. Abu-Lebdeh, “Towards improving the practical energy density of Li-ion batteries: optimization and evaluation of silicon: graphite composites in full cells,” Journal of The Electrochemical Society, vol. 164, no. 1, p. A6294, 2016, doi: 10.1149/2.0481701jes.
[26] X. Han, X. Feng, M. Ouyang et al., “A Comparative Study of Charging Voltage Curve Analysis and State of Health Estimation of Lithium-ion Batteries in Electric Vehicle,” Automot. Innov., vol. 2, pp. 263-275, 2019, doi: 10.1007/s42154-019-00080-2.
[27] M. Loveridge, M. Lain, I. Johnson et al., “Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes,” Sci. Rep., vol. 6, 2016, Art. no. 37787, doi: 10.1038/srep37787.
[28] Y. Jin, B. Zhu, Z. Lu, N. Liu, and J. Zhu, “Challenges and recent progress in the development of Si anodes for lithium‐ion battery,” Advanced Energy Materials, vol. 7, no. 23, September 2017, Art. no. 1700715, doi: 10.1002/aenm.201700715.
[29] V. A. Agubra and J. W. Fergus, “The formation and stability of the solid electrolyte interface on the graphite anode,” Journal of Power Sources, vol. 268, pp. 153-162, 2014, doi: 10.1016/j.jpowsour.2014.06.024.
[30] N. Lin et al., “Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy,” Journal of Power Sources, vol. 365, pp. 235-239, 15 October 2017, doi: 10.1016/j.jpowsour.2017.08.045.DOI: https://doi.org/10.34238/tnu-jst.5428
Refbacks
- There are currently no refbacks.





