RESEARCH FOR THE FORMING PROCESS OF AuR@Ag CORE-SHELL STRUCTURE NANORODS USING ANISOTROPIC DEVELOPMENT OF Ag SHELL | Huế | TNU Journal of Science and Technology

RESEARCH FOR THE FORMING PROCESS OF AuR@Ag CORE-SHELL STRUCTURE NANORODS USING ANISOTROPIC DEVELOPMENT OF Ag SHELL

About this article

Received: 11/02/22                Revised: 25/04/22                Published: 26/04/22

Authors

1. Do Thi Hue Email to author, TNU - University of Education
2. Tran Khac Khoi, TNU - University of Education
3. Nguyen Thi Minh Nguyet, TNU - University of Education
4. Luu Thi anh, TNU - University of Education
5. Le Anh Trung, TNU - University of Education
6. Tran Thi Thuc, TNU - University of Education
7. Panhya Chanhthalangsy, TNU - University of Education
8. Luong Ba Son, TNU - University of Education
9. Le Tien Ha, TNU – Universsty of Sciences

Abstract


Core-shell structure nanorods AuR@Ag with the core of gold nanorods and Ag shell were synthesized using the seed method in CTAC medium. The anisotropic growth of the Ag shell was controlled by investigating the dependence of the shell growth on the concentration of Ag+ ions and the temperature of the reduction reaction. The optical properties of the particles were investigated through UV-VIS absorption spectroscopy and the morphology and size of the particles were observed through TEM and SEM images. The results show that the core-shell structure nanorods AuR@Ag have been synthesized with high efficiency, the generated particles are relatively uniform in shape and size. The higher the concentration of Ag+ ions, the thicker the crust, and the most suitable temperature for controlled crust development is 65oC.

Keywords


Core-shell structure nanorods AuR@Ag; CTAC; Seed method; Temperature; Ag shell

References


[1] D. R. Mota, G. A. S. Lima, G. B. Helene, and D. S. Pellosi, “Tailoring Nanoparticle Morphology to Match Application: Growth under Low-Intensity Polychromatic Light Irradiation Governs the Morphology and Optical Properties of Silver Nanoparticles,” ACS Applied Nano Materials, 2020, 3, 4893−49032020, DOI: 10.1021/acsanm.0c01078.

[2] J. A. Badán, E. Navarrete-Astorga, R. Henríquez, F. Martín, R. E. Marotti, J. R. Ramos-Barrado, and E. A. Dalchiele, “Optical properties of silver nanoparticles deposited onto silicon substrates by different soft-solution processing techniques,” Optical Materials, vol. 100, 2020, Art. no. 109651, doi: 10.1016/j.optmat.2020.109651.

[3] T. H. Do, T. H. L. Nghien, and V. H. Chu, “Seeded Growth Synthesis of Uniform Gold Nanoparticles with Controlled Diameters up to 220 nm,” Journal of Electronic Materials, vol. 50, no. 10, pp. 5514-5521, 2021, doi: 10.1007/s11664-021-09081-6.

[4] M. O. Stetsenko, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, O. Pluchery, and S. V. Snegir, “Optical Properties of Gold Nanoparticle Assemblies on a Glass Surface,” Nanoscale Research Letters, vol. 12, no. 1, 2017, doi: 10.1186/s11671-017-2107-8.

[5] R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular Structure-Function Relations of the Optical Properties and Dimensions of Gold Nanoparticle Assemblies,” Angewandte Chemie, vol. 122, no. 7, pp. 1240-1243, 2010, doi: 10.1002/ange.200906636

[6] E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano, vol. 8, no. 5, pp. 4395-4402, 2014, doi: 10.1021/nn406270z.

[7] S. I. Sadovnikov and A. A. Rempel, “Synthesis of nanocrystalline silver sulfide,” Inorganic Materials, vol. 51, no. 8, pp. 759-766, 2015, doi: 10.1134/s0020168515070134.

[8] Y. Zheng, X. Zhong, Z. Li, and Y. Xia, “Successive, Seed-Mediated Growth for the Synthesis of Single-Crystal Gold Nanospheres with Uniform Diameters Controlled in the Range of 5-150 nm,” Particle & Particle Systems Characterization, vol. 31, no. 2, pp. 266-273, 2013, doi: 10.1002/ppsc.201300256.

[9] J. H. Yoon, F. Selbach, L. Langolf, and S. Schlücker, “Ideal Dimers of Gold Nanospheres for Precision Plasmonics: Synthesis and Characterization at the Single-Particle Level for Identification of Higher Order Modes,” Small, vol. 14, no. 4, 2017, Art. no. 1702754, doi: 10.1002/smll.201702754.

[10] Hue, D.T., Thu Huong, T. T., Thu Ha, P. T., Trang, T. T., Ha Lien, N. T., & Xuan Hoa, V., “The dependence of medium refractive index on optical properties of gold nanorods and their SERS application,” AIP Advances, vol. 11, no. 5, 2021, Art. no. 055319, doi: 10.1063/5.0052882.

[11] X. Xu, Y. Zhao, X. Xue, S. Huo, F. Chen, G. Zou, and X. -J. Liang, “Seedless synthesis of high aspect ratio gold nanorods with high yield,” Journal of Materials Chemistry A, vol. 2, no. 10, 2014, Art. no. 3528, doi: 10.1039/c3ta13905k.

[12] J. Soto-Cruz, P. Conejo-Valverde, G. Sáenz-Arce, H. Dou, and O. Rojas-Carrillo, “Biofabrication of Gold Nanotriangles Using Liposomes as a Dual Functional Reductant and Stabilizer,” Langmuir, vol. 37, no. 11, pp. 3446-3455, 2021, doi:10.1021/acs.langmuir.1c00104.

[13] R. Das and R. K. Soni, “Synthesis and surface-enhanced Raman scattering of indium nanotriangles and nanowires,” RSC Advances, vol. 7, no. 51, pp. 32255-32263, 2017, doi: 10.1039/c7ra03317f.

[14] A. Nekahi, S. P. H. Marashi, and D. H. Fatmesari, “High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio,” Materials Chemistry and Physics, vol. 184, pp. 130-137, 2016, doi: 10.1016/j.matchemphys.2016.09.

[15] M. Wang, R. Salut, H. Lu, M. -A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light: Science & Applications, vol. 8, no. 1, 2019, doi:10.1038/s41377-019-0186-2.

[16] Ha Pham, T. T., Vu, X. H., Dien, N. D., Trang, T. T., Van Truong, N., Thanh, T. D., … Ca, N. X. “The structural transition of bimetallic Ag–Au from core/shell to alloy and SERS application,” RSC Advances, vol. 10, no. 41, pp. 24577-24594, 2020, doi: 10.1039/d0ra04132g.

[17] O. Peña-Rodríguez, P. Díaz-Núñez, G. González-Rubio, V. Manzaneda-González, A. Rivera, J. M. Perlado, and A. Guerrero-Martínez, “Au@Ag Core–Shell Nanorods Support Plasmonic Fano Resonances,” Scientific Reports, vol. 10, no. 1, 2020, doi: 10.1038/s41598-020-62852-9.

[18] Z. Wang, X. Quan, Z. Zhang, and P. Cheng, “Optical absorption of carbon-gold core-shell nanoparticles,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 205, pp. 291-298, 2018, doi: 10.1016/j.jqsrt.2017.08.001.

[19] R. A. Bapat, T. V. Chaubal, C. P. Joshi, P. R. Bapat, H. Choudhury, M. Pandey, and P. Kesharwani, “An overview of application of silver nanoparticles for biomaterials in dentistry,” Materials Science and Engineering: C, vol. 91, pp. 881-898, 2018, doi: doi:10.1016/j.msec.2018.05.069.

[20] S. Nakamura, M. Sato, Y. Sato, N. Ando, T. Takayama, M. Fujita, and M. Ishihara, “Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers,” International Journal of Molecular Sciences, vol. 20, no. 15, 2019, Art. no. 3620, doi: 10.3390/ijms20153620.

[21] L. C. S. Belusso, G. F. Lenz, E. E. Fiorini, A. J. Pereira, R. Sequinel, R. A. Bini, and R. Schneider, “Synthesis of silver nanoparticles from bottom up approach on borophosphate glass and their applications as SERS, antibacterial and glass-based catalyst,” Applied Surface Science, vol. 473, pp. 303-312, 2019, doi:10.1016/j.apsusc.2018.12.155.

[22] Hue, D. T., Thao, N. T. P., Khoi, T. K., & Ha, C. V., “Multi-shaped silver meso-particles with tunable morphology for surface enhanced Raman scattering,” Optics Communications, vol. 497, 2021, Art. no. 127200, doi: 10.1016/j.optcom.2021.127200.

[23] T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Applied Surface Science, vol. 478, pp. 887-895, 2019, doi: 10.1016/j.apsusc.2019.02.026.

[24] Y. Li, M. X. Guo, L. He, C. Z. Huang, and Y. F. Li, “Green One-pot Synthesis of Silver Nanoparticles/Metal-Organic Gels Hybrid and Its Promising SERS Application,” ACS Sustainable Chemistry & Engineering, vol. 7, pp. 5292−5299, 2019, doi:10.1021/acssuschemeng.8b06305.

[25] K. Chand, D. Cao, D. Eldin Fouad, A. Hussain Shah, A. Qadeer Dayo, K. Zhu, and S. Dong, “Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts,” Arabian Journal of Chemistry, 3, 1-14, 2020, doi: 10.1016/j.arabjc.2020.01.009.

[26] S. Zong, Z. Wang, J. Yang, C. Wang, S. Xu, and Y.Cui, “A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core–shell nanorods,” Talanta, vol. 97, pp. 368-375, 2012, doi: 10.1016/j.talanta.2012.04.047.

[27] C. R. Rekha, V. U. Nayar, and K. G. Gopchandran, “Synthesis of highly stable silver nanorods and their application as SERS substrates,” Journal of Science: Advanced Materials and Devices, vol. 3, no. 2, pp. 196-205, 2018, doi: 10.1016/j.jsamd.2018.03.003.

[28] H. Xu, C. Kan, C. Miao, C. Wang, J. Wei, Y. Ni, and D. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photonics Research, vol. 5, no. 1, p. 27, 2017, doi: 10.1364/prj.5.000027.

[29] Y. Ma, J. Zhou, W. Zou, Z. Jia, L. Petti, and P. Mormile, “Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering Responses of Au@Ag Core–Shell Nanorods with Different Thickness of Ag Shell,” Journal of Nanoscience and Nanotechnology, vol. 14, no. 6, pp. 4245-4250, 2014.

[30] L. Sun, M. Zhang, V. Natarajan, X. Yu, X. Zhang, and J. Zhan, “Au@Ag core–shell nanoparticles with a hidden internal reference promoted quantitative solid phase microextraction-surface enhanced Raman spectroscopy detection,” RSC Advances, vol. 7, no. 38, pp. 23866-23874, 2017, doi: 10.1039/c7ra03164e.

[31] R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the Evolution and Nature of the Plasmons in (Au Core)-(Ag Shell) Nanorods,” Advanced Materials, vol. 24, no. 35, pp. OP200-OP207, 2012, doi: 10.1002/adma.201201896.




DOI: https://doi.org/10.34238/tnu-jst.5528

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved