VIDEO SUMMARIZATION USING BACKGROUND SUBTRACTION TECHNIQUES
About this article
Received: 24/02/22                Revised: 28/04/22                Published: 11/05/22Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] A. S. Murugan, K. S. Devi, A. Sivaranjani, and P. Srinivasan, “A Study on Various Methods Used for Video Summarization and Moving Object Detection for Video Surveillance Applications,” Multimedia Tools and Applications, vol. 77, no. 18, pp. 23273-23290, 2018.
[2] H. Wei, B. Ni, Y. Yan, H. Yu, X. Yang, and C. Yao, “Video Summarization via Semantic Attended Networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 01, pp. 216-223, 2018.
[3] B. A. Plummer, M. Brown, and S. Lazebnik, “Enhancing Video Summarization via Vision-Language Embedding,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 5781-5789.
[4] Y. Yuan, T. Mei, P. Cui, and W. Zhu, “Video Summarization by Learning Deep Side Semantic Embedding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 1, pp. 226-237, 2019.
[5] S. Zhang, Y. Zhu, and A. K. Roy-Chowdhury, “Context-Aware Surveillance Video Summarization,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5469-5478, 2016.
[6] S. K. Kuanar, K. B. Ranga, and A. S. Chowdhury, “Multi-View Video Summarization Using Bipartite Matching Constrained Optimum-Path Forest Clustering,” IEEE Transactions on Multimedia, vol. 17, no. 8, pp. 1166-1173, 2015.
[7] O. Elharrouss, N. Al-Maadeed, and S. Al-Maadeed, “Video Summarization Based on Motion Detection for Surveillance Systems,” in Proc. 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 2019, pp. 366-371.
[8] A. Kanehira, L. Van Gool, Y. Ushiku, and T. Harada, “Viewpoint-Aware Video Summarization,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018, pp. 7435-7444.
[9] T. -J. Fu, S. -H. Tai, and H. -T. Chen, “Attentive and Adversarial Learning for Video Summarization,” in Proc. IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2019, pp. 1579-1587.
[10] X. He, Y. Hua, T. Song, Z. Zhang, Z. Xue, R. Ma, N. Robertson, and H. Guan, “Unsupervised Video Summarization with Attentive Conditional Generative Adversarial Networks,” in Proc. 27th ACM International Conference on Multimedia, New York, NY, USA, 2019, pp. 2296-2304.
[11] Z. Ji, K. Xiong, Y. Pang, and X. Li, “Video Summarization with Attention-Based Encoder–Decoder Networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1709-1717, 2020.
[12] M. Rochan and Y. Wang, “Video Summarization by Learning from Unpaired Data,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7902-7911.
[13] M. Rochan, L. Ye, and Y. Wang, “Video Summarization Using Fully Convolutional Sequence Networks,” in Proc. European Conference on Computer Vision (ECCV), Munich, Germany, 2018, pp. 347-363.
[14] A. Khumaidi, E. M. Yuniarno, and M. H. Purnomo, “Welding Defect Classification Based on Convolution Neural Network (CNN) and Gaussian Kernel,” in Proc. International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 2017, pp. 261-265.
[15] S. Zhang, E. Staudt, T. Faltemier, and A. K. Roy-Chowdhury, “A Camera Network Tracking (CamNeT) Dataset and Performance Baseline,” in Proc. IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2015, pp. 365-372.
[16] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C. -C. Chen, J. T. Lee, S. Mukherjee, J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, and M. Shah, “A Large-Scale Benchmark Dataset for Event Recognition in Surveillance Video,” in Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 2011, pp. 3153-3160.DOI: https://doi.org/10.34238/tnu-jst.5582
Refbacks
- There are currently no refbacks.





