ELECTRICITY THEFT DETECTION WITH CONVOLUTIONAL NEURAL NETWORKS BASED ON SMART METERS DATA
About this article
Received: 06/05/22                Revised: 31/05/22                Published: 31/05/22Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] P. Glauner et al., “The challenge of non-technical loss detection using artificial intelligence: A survey,” International Journal of Computational Intelligence Systems, vol. 10, no. 1, p. 760, 2017.
[2] ANEEL, “Perdas de energia eltrica na distribuio,” 2019. [Online]. Available: http://www.aneel.gov.br/documents/654800/18766993/Relatrio+Perdas+de+Energia_+Edio+1-2019-02-07.pdf, 07.2019.
[3] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the smart grid,” IEEE Security & Privacy Magazine, vol. 7, no. 3, pp. 75-77, 2009.
[4] PC Ha Tinh, “Detect 92 electricity theft from custormers with 600 millions VND fine,” 2021. [Online]. Available: https://thuonghieucongluan.com.vn/dien-luc-ha-tinh-xu-ly-92-vu-an-cap-dien-truy-thu-hon-600-trieu-dong-a125633.html, 01.2021.
[5] S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, and S. Zonouz, “A multi-sensor energy theft detection framework for advanced metering infrastructures,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 7, pp. 1319-1330, 2013.
[6] A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra, “Decision tree and SVM-based data analytics for theft detection in smart grid,” IEEE Trans. Ind. Inform., vol. 12, pp. 1005-1016, 2016.
[7] S. Li, Y. Han, X. Yao, S. Yingchen, J. Wang, and Q. Zhao. “Electricity Theft Detection in Power Grids with Deep Learning and Random Forests,” Journal of Electrical and Computer Engineering, vol. 2019, 2019, Art. no. 4136874.
[8] S. S. S. R. Depuru, L. Wang, V. Devabhaktuni, and P. Nelapati, “A hybrid neural network model and encoding technique for enhanced classification of energy consumption data,” Proceedings of the 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 24–29 July 2011.
[9] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the adaptive learning rate and beyond,” The International Conference on Learning Representations, 2020.
[10] A. Turpin and F. Scholer, “User performance versus precision measures for simple search tasks,” Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 06, New York, NY, USA, 2006.
[11] F. A. Bohani, A. Suliman, M. Saripuddin, S. S. Sameon, N. S. Md Salleh, and S. Nazeri, "A Comprehensive Analysis of Supervised Learning Techniques for Electricity Theft Detection," Journal of Electrical and Computer Engineering, vol. 2021, 2021, Art. no. 9136206.
[12] Z. Zheng, Y. Yang, X. Niu, H.-N. Dai, and Y. Zhou, "Wide & Deep Convolutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids," IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1606-1615, April 2018.DOI: https://doi.org/10.34238/tnu-jst.5947
Refbacks
- There are currently no refbacks.





