GONDRAN-MINOUX ENVELOPING RANK OF MATRICES ON SEMIRINGS
About this article
Received: 21/07/22                Revised: 19/08/22                Published: 19/08/22Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] J. S. Golan, Semirings and their Applications. Kluwer Academic Publishers, Dordrecht-Boston-London, 1999.
[2] Y. J. Tan, “On invertible matrices over commutative semirings,” Linear Multilinear Algebr., vol. 61, no. 6, pp. 710–724, 2013.
[3] P. Butkovič, H. Schneider, and S. Sergeev, “Generators, extremals and bases of max cones,” Linear Algebra Appl., vol. 421, no. 2-3 spec. iss., pp. 394–406, 2007.
[4] S. G. and A. G. M. Akian, “Linear independence over tropical semirings and beyond,” Trop. idempotent Math. Contemp. Math., vol. 495, pp. 1–38, 2009.
[5] L. R. B. Beasley and A. E. Guterman, “Rank inequalities over semirings,” J. Korean Math. Soc., vol. 42, no. 2, pp. 223–241, 2005.
[6] Y. Shitov, “Inequalities for Gondran-Minoux rank and idempotent semirings,” Linear Algebra Appl., vol. 435, no. 7, pp. 1769–1777, 2011.
[7] Y. N. Shitov, “On the coincidence of the factor and Gondran-Minoux rank functions of matrices over a semiring,” J. Math. Sci. (United States), vol. 193, no. 5, pp. 802–808, 2013.
[8] Y. N. Shitov, “Matrices with different Gondran-Minoux and determinantal ranks over max-algebras,” J. Math. Sci., vol. 163, no. 5, pp. 598–624, 2009.
[9] C. C. Ha, “Stably free rank of idempotent matrices on semirings,” Univ. Da Nang, J. Sci. Technol., vol. 20, pp. 56–60, 2022.
DOI: https://doi.org/10.34238/tnu-jst.6278
Refbacks
- There are currently no refbacks.





