ANALYZING THE FREQUENCY OF ANTIMICROBIAL RESISTANCE GENE IN SALMONELLA AND DETERMINING POTENTIAL INHIBITORS OF ANTIBIOTIC RESISTANCE PROTEIN BY VIRTUAL SCREENING | Ly | TNU Journal of Science and Technology

ANALYZING THE FREQUENCY OF ANTIMICROBIAL RESISTANCE GENE IN SALMONELLA AND DETERMINING POTENTIAL INHIBITORS OF ANTIBIOTIC RESISTANCE PROTEIN BY VIRTUAL SCREENING

About this article

Received: 09/08/22                Revised: 19/10/22                Published: 21/10/22

Authors

1. Ta Ngoc Ly Email to author, Da nang University of Technology and Science - University of Da nang
2. Dinh Thi Hoai, Da nang University of Technology and Science - University of Da nang

Abstract


Antimicrobial resistance is a global public health concern. Salmonella is one of the microorganisms in which some resistant serotypes have emerged, affecting the food chain. Therefore, research to find new compounds with potential to inhibit antibiotic resistance Salmonella is urgently needed. This study aims to determine the frequency of antibiotic resistance genes appearing in the Salmonella genome isolated in Vietnam and to screen compounds with potential inhibiting antibiotic resistance related protein. Using bioinformatics tools, the analysis results showed that the AAC(6')-Iaa gene has the highest frequency in the studied samples. For virtual screening of bioactive compounds with potential to inhibit antibiotic resistance, molecular docking and pharmacokinetic properties prediction methods are used. The results of the screening process found 4 most potential compounds including KU-0058684, AdipoRon, BPIPP và CID 3447933. These compounds have high affinity to target proteins, suitable pharmacokinetic properties for drug formulation, and can be used as leading compounds in further drug development studies.

Keywords


AAC(6') - Iaa; Antimicrobial resistance; Frequency; Salmonella; Virtual screening

References


[1] J. O.’ Neill, “Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired,” 2014. [Online]. Available: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. [Accessed Aug. 12, 2022].

[2] World Health Organization, “Antimicrobial resistance - global report on surveillance,” World Heal. Organ., vol. 61, no. 3, pp. 383-394, 2014.

[3] O. Ehuwa, A. K. Jaiswal, and S. Jaiswal, “Salmonella, Food Safety and Food Handling Practices,” Foods, vol. 10, no. 5, 2021, doi: 10.3390/foods10050907.

[4] S. E. Majowicz et al., “The global burden of nontyphoidal Salmonella gastroenteritis,” Clin. Infect. Dis. an Off. Publ. Infect. Dis. Soc. Am., vol. 50, no. 6, pp. 882-889, Mar. 2010, doi: 10.1086/650733.

[5] O. O. Ikhimiukor, E. E. Odih, P. Donado-Godoy, and I. N. Okeke, “A bottom-up view of antimicrobial resistance transmission in developing countries,” Nat. Microbiol., vol. 7, no. 6, pp. 757-765, 2022, doi: 10.1038/s41564-022-01124-w.

[6] Ł. Mąka and M. Popowska, “Antimicrobial resistance of Salmonella spp. isolated from food,” Rocz. Panstw. Zakl. Hig., vol. 67, no. 4, pp. 343-358, 2016.

[7] W. Deng et al., “Antibiotic Resistance in Salmonella from Retail Foods of Animal Origin and Its Association with Disinfectant and Heavy Metal Resistance,” Microb. Drug Resist., vol. 24, no. 6, pp. 782-791, 2018, doi: 10.1089/mdr.2017.0127.

[8] Y. Xu, X. Zhou, Z. Jiang, Y. Qi, A. Ed-Dra, and M. Yue, “Epidemiological Investigation and Antimicrobial Resistance Profiles of Salmonella Isolated From Breeder Chicken Hatcheries in Henan, China,” Front. Cell. Infect. Microbiol., vol. 10, p. 497, 2020, doi: 10.3389/fcimb.2020.00497.

[9] A. Z. Moe et al., “Prevalence and Antimicrobial Resistance of Salmonella Isolates from Chicken Carcasses in Retail Markets in Yangon, Myanmar,” J. Food Prot., vol. 80, no. 6, pp. 947-951, Jun. 2017, doi: 10.4315/0362-028X.JFP-16-407.

[10] X. Xia, “Bioinformatics and Drug Discovery,” Curr. Top. Med. Chem., vol. 17, no. 15, pp. 1709-1726, 2017, doi: 10.2174/1568026617666161116143440.

[11] N. L. Ta and T. A. T. Nguyen, “Identification of mpro potential inhibitors of Sars-Cov-2 from the database of Vietnam herb,” TNU J. Sci. Technol., vol. 227, no. 01, pp. 10-18, 2021, doi: 10.34238/tnu-jst.5206.

[12] J. J. Carrique-Mas et al., “Antimicrobial usage in chicken production in the Mekong Delta of Vietnam,” Zoonoses Public Health, vol. 62, Suppl 1, pp. 70-78, Apr. 2015, doi: 10.1111/zph.12165.

[13] Q. H. Luu, T. L. A. Nguyen, T. N. Pham, N. G. Vo, and P. Padungtod, “Antimicrobial use in household, semi-industrialized, and industrialized pig and poultry farms in Viet Nam,” Prev. Vet. Med., vol. 189, p. 105292, 2021, doi: 10.1016/j.prevetmed.2021.105292.

[14] A. B. Portes, G. Rodrigues, M. P. Leitão, R. Ferrari, C. A. Conte Junior, and P. Panzenhagen, “Global distribution of plasmid-mediated colistin resistance mcr gene in Salmonella: A systematic review,” J. Appl. Microbiol., vol. 132, no. 2, pp. 872-889, Feb. 2022, doi: 10.1111/jam.15282.

[15] K. L. Hopkins et al., “Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain?,” Euro Surveill. Bull. Eur. sur les Mal. Transm. = Eur. Commun. Dis. Bull., vol. 15, no. 22, p. 19580, Jun. 2010.

[16] C. Lucarelli et al., “Evidence for a second genomic island conferring multidrug resistance in a clonal group of strains of Salmonella enterica serovar Typhimurium and its monophasic variant circulating in Italy, Denmark, and the United Kingdom,” J. Clin. Microbiol., vol. 48, no. 6, pp. 2103-2109, Jun. 2010, doi: 10.1128/JCM.01371-09.

[17] Ł. Mąka, E. Maćkiw, H. Ścieżyńska, M. Modzelewska, and M. Popowska, “Resistance to Sulfonamides and Dissemination of sul Genes Among Salmonella spp. Isolated from Food in Poland,” Foodborne Pathog. Dis., vol. 12, no. 5, pp. 383-389, May 2015, doi: 10.1089/fpd.2014.1825.

[18] A. Arnott et al., “Multidrug-Resistant Salmonella enterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016-2017,” Emerg. Infect. Dis., vol. 24, no. 4, pp. 751-753, Apr. 2018, doi: 10.3201/eid2404.171619.

[19] I. Rodríguez, S. Jahn, A. Schroeter, B. Malorny, R. Helmuth, and B. Guerra, “Extended-spectrum β-lactamases in German isolates belonging to the emerging monophasic Salmonella enterica subsp. enterica serovar Typhimurium 4,[5],12:i:- European clone.,” The Journal of antimicrobial chemotherapy, vol. 67, no. 2, pp. 505-508, Feb. 2012, doi: 10.1093/jac/dkr452.

[20] D. Berdejo, N. Merino, E. Pagán, D. García-Gonzalo, and R. Pagán, “Genetic variants and phenotypic characteristics of salmonella typhimurium-resistant mutants after exposure to carvacrol,” Microorganisms, vol. 8, no. 6, pp. 1-22, 2020, doi: 10.3390/microorganisms8060937.

[21] E. A. McMillan et al., “Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals,” Front. Microbiol., vol. 10, p. 832, 2019, doi: 10.3389/fmicb.2019.00832.

[22] M. B. Sadiq, J. Tarning, T. Z. Aye Cho, and A. K. Anal, “Antibacterial Activities and Possible Modes of Action of Acacia nilotica (L.) Del. against Multidrug-Resistant Escherichia coli and Salmonella,” Molecules, vol. 22, no. 1, Jan. 2017, doi: 10.3390/molecules22010047.

[23] P. G. Vital, M. B. D. Caballes, and W. L. Rivera, “Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety,” J. Environ. Sci. Heal. Part. B, Pestic. food Contam. Agric. wastes, vol. 52, no. 9, pp. 683-689, Sep. 2017, doi: 10.1080/03601234.2017.1331676.




DOI: https://doi.org/10.34238/tnu-jst.6344

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved