CHILDREN EMERGENCY SIMULATION BASED ON 3D OBJECT’S SURFACE APPROXIMATED TECHNIQUES | Hoàng | TNU Journal of Science and Technology

CHILDREN EMERGENCY SIMULATION BASED ON 3D OBJECT’S SURFACE APPROXIMATED TECHNIQUES

About this article

Received: 11/08/22                Revised: 31/08/22                Published: 31/08/22

Authors

1. Nguyen Duc Hoang, Posts and Telecommunications Institute of Technology
2. Do Nang Toan Email to author, Institute of Information Technology, VAST
3. Le Ngoc Duy, Vietnam National Children's Hospital

Abstract


Preclinical medical training provides medical staff with skills and knowledge that are highly effective in meeting the quantitative, qualitative and ethical requirements of modern healthcare. Innovative technologies that enable hands-on training on virtual simulations take the load off the traditional medical training system. To perform medical simulations, surface approximation techniques have been applied to improve many aspects of practical applications. This article proposes to use 3D object surface approximation techniques in developing a pre-clinical pediatric emergency practice system based on virtual reality technology. Surface approximation techniques are applied on 3D models to increase efficiency in detecting collisions between objects in a virtual environment, showing variations in color and shape of objects accurately and details. These techniques have been integrated to develop a pre-clinical medical training system to be implemented in Vietnam.

Keywords


Medical simulation; Virtual reality; Surface approximate; 3D Model; Pre-clinical pediatric

References


[1] J. L. McGrath, J. M. Taekman, P. Dev, D. R. Danforth, D. Mohan, N. Kman, A. Crichlow, and W. F. Bond, “Using Virtual Reality Simulation Environments to Assess Competence for Emergency Medicine Learners,” Acad. Emerg. Med., vol. 25, no. 2, pp. 186-195, 2018.

[2] R. J. ScaleseEmail, V. T. ObesoS, and B. Issenberg, “Simulation Technology for Skills Training and Competency Assessment in Medical Education,” J. Gen. Intern. Med., vol. 23, pp. 46-49, 2008.

[3] C. Sun-Ju, K. Eun-Ok, K. Young-Ok, and H. Kwon, “The Effects of Simulation Training for New Graduate Critical Care Nurses on Knowledge, Self-efficacy, and Performance Ability of Emergency Situations at Intensive Care Unit,” Korean Journal of Adult Nursing, vol. 22, no. 4, pp. 375-383, 2010.

[4] U. Theilen, P. Leonard, P. Jones, R. Ardill, J. Weitz, D. Agrawal, and D. Simpson, “Regular in situ simulation training of paediatric medical emergency team improves hospital response to deteriorating patients,” Resuscitation, vol. 84, no. 2, pp. 218-222, 2013.

[5] M. Bearman, D. Nestel, and P. Andreatta, “Simulation-based medical education,” in Oxford Textbook of Medical Education, K. Walsh (ed.), Oxford University Press, 2013, pp. 186–197 .

[6] K. Walsh, “The future of simulation in medical education,” The Journal of Biomedical Research, vol. 29, no. 3, pp. 259-260, 2015.

[7] B. M. Kyaw and N. Saxena, “Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis,” Digital Health Education Collaboration, vol. 21, no. 1, 2019, Art. no. e12959.

[8] M. S. Bracq, E. Michinov, and P. Jannin, “Virtual Reality Simulation in Nontechnical Skills Training for Healthcare Professionals: A Systematic Review,” Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, vol. 14, no. 3, pp. 188–194, 2019, doi:10.1097/SIH. 0000000000000347.

[9] S. L. Farra, S. J. Smith, and D. L. Ulrich, “The Student Experience With Varying Immersion Levels of Virtual Reality Simulation,” Nursing Education Perspectives, vol. 39, no.2, pp.99-101, 2017 doi: 10.1097/01.NEP.0000000000000258.

[10] T. Sawyer, M. M. Gray, and R. Umoren, “The Global Healthcare Simulation Economy: A Scoping Review,” Cureus, vol. 14, no. 2, 2022, Art. no. e22629, doi:10.7759/cureus.22629.

[11] S. L. Farra, M. Gneuhs, E. Hodgson, B. Kawosa, E. T. Miller, A. Simon, N. Timm, and J. Hausfeld, “Comparative Cost of Virtual Reality Training and Live Exercises for Training Hospital Workers for Evacuation,” CIN: Computers, Informatics, Nursing, vol. 37, no. 9, pp. 446–454, 2019, doi:10.1097/CIN.0000000000000540.

[12] C.-W. Liao and G. Medioni, “Surface approximation of a cloud of 3D points,” Proceedings of 1994 IEEE 2nd CAD-Based Vision Workshop, Champion, PA, USA, 8-11 Feb. 1994, pp. 274–281, doi:10.1109/cadvis.1994.284492.

[13] J. Malcolm, Y. Rathi, A. Yezzi, A. Tannenbaum, J. M. Reinhardt, and J. P. W. Pluim, “Fast approximate surface evolution in arbitrary dimension,” SPIE Proceedings Medical Imaging 2008: Image Processing, San Diego, CA, Saturday 16 February 2008, pp. 69144C–69144C-9, doi:10.1117/12.771080.

[14] Y. Zhao, Y. Endo, Y. Kanamori, and J. Mitani, “Approximating 3D Surfaces using Generalized Waterbomb Tessellations,” Journal of Computational Design and Engineering, 2018, S2288-4300(17)30055-6, doi:10.1016/j.jcde.2018.01.002.

[15] L. Minto, P. Zanuttigh, and G. Pagnutti, “Deep Learning for 3D Shape Classification based on Volumetric Density and Surface Approximation Clues,” Conference: International Conference on Computer Vision Theory and Applications, 2018, doi: 10.5220/0006619103170324.

[16] M. Samuels, and S. Wieteska, Advanced Paediatric Life Support (A Practical Approach to Emergencies), Wiley Blackwell, 2016, doi:10.1002/9781119241225.

[17] D. H. Nguyen, “On the method for building a bounding volume hierarchy automatically for 3D objects,” Journal of Science and Technology on Information and Communications, vol.1, pp. 19-27, 2019.

[18] D. H. Nguyen, N. T. Do, T. M. Nguyen, and N. T. Pham, “A technique which consider the capillary refill time CRT for simulation of skin deformation and change of skin color caused by external force,” TNU Journal of Science and Technology, vol. 226, no. 07, pp. 50-58, 2021.

[19] D. H. Nguyen, N. T. Do, and T. M. Nguyen, “A technique to improve the displaying quality of skin deformation caused by external force,” Proceedings of International Conference on Advanced Communication Technology (ICACT), 13-16 Feb. 2022, PyeongChang, Korea, pp.507-512.




DOI: https://doi.org/10.34238/tnu-jst.6353

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved