STRUCTURE, MORPHOLOGY AND MAGNETIC PROPERTIES IN Fe/Fe3O4 NANOCOMPOSITES | Mạnh | TNU Journal of Science and Technology

STRUCTURE, MORPHOLOGY AND MAGNETIC PROPERTIES IN Fe/Fe3O4 NANOCOMPOSITES

About this article

Received: 06/09/22                Revised: 07/10/22                Published: 10/10/22

Authors

1. Do Hung Manh Email to author, Institute of Materials Science - Vietnam Academy of Science and Technology
2. Le Thi Hong Phong, Institute of Materials Science - Vietnam Academy of Science and Technology
3. Ta Ngoc Bach, Institute of Materials Science - Vietnam Academy of Science and Technology
4. Nguyen Van Dang, TNU - University of Sciences
5. Nguyen Van Khien, TNU - University of Sciences
6. Skorvanek Ivan, Slovak Academy of Sciences, Kosice, Slovakia

Abstract


The influence of annealing temperature on the structure, morphology and magnetic properties of Fe/Fe3O4 nanocomposite powder was investigated. The samples were fabricated by combining high-energy ball milling and annealing at temperatures of 623, 723 and 823 K. The structure and morphology of the samples were characterized by X-ray diffraction, scanning electron microscopy. These measurements indicated the evolution of the crystalline phases of the samples as the temperature increases. At the same time, the morphology of the samples changed abnormally at different annealing temperatures: granular (623 K), leaf (723 K) and rod (823 K). The room-temperature magnetization measurements pointed out a decrease of saturation magnetization as annealing temperature increases, while coercivity increases. Besides, the presence of a Verwey phase transition near 120 K is confirmed the good crystal quality of Fe3O4 phase. Our study demonstrates the possibility of tuning the morphology and magnetism in iron/iron oxide nano systems through controlled oxidation at the different temperatures.

Keywords


Fe/Fe3O4 nanocomposites; Lamellar structure; X-ray diffraction; Magnetic properties; Verwey phase transition

References


[1] A. V. B. Reddy, Z. Yusop, J. Jaafar, Y. V. M. Reddy, A. B. Aris, Z. A. Maji, J. Talib, and G. Madhavi, “Recent Progress on Fe-based nanoparticles: Synthesis, Properties, Characterization and Environmental Applications,” J. Environ. Chem. Eng., vol. 4, pp. 3537-3553, 2016, doi: 10.1016/j.jece.2016.07.035.

[2] M. V. Hernandez, I. M. Bobadilla, R. G. G. Gonzalez, E. R. Garcia, R. V. O. Velazquez, L. A. Juarez, and I. T. Pacheco, “Nanoparticles as Potential Antivirals in Agriculture,” Agriculture, vol. 10, 2020, Art. no. 444, doi: 10.3390/agriculture10100444.

[3] N. V. Long, Y. Yang, T. Teranishi, C. M. Thi, Y. Cao, and M. Nogami, “Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles,” J. Nanosci. Nanotech., vol. 15, pp. 10091-10107, 2015, doi: 10.1166/jnn.2015.11691.

[4] L. Wang, J. Li, Z. Wang, L. Zhao, and Q. Jiang, “Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal,” Dalton Trans., vol. 42, pp. 2572-2579, 2013, doi: 10.1039/C2DT32245E.

[5] A. Boutemedjet, S. Djerad, L. Tifouti, and K. Bachari, “Effect of Fe content on the effectiveness of Fe/Fe3O4 catalyst in Fenton process,” J. Water Process. Eng., vol. 41, 2021, Art. no. 102079, doi: 10.1016/j.jwpe.2021.102079.

[6] D. K. Tung, D. H. Manh, L. T. H. Phong, P. H. Nam, D. N. H. Nam, N. T. N. Anh, H. T. T. Nong, M. H. Phan, and N. X. Phuc, “Iron nanoparticles fabricated by high energy ball milling for magnetic hyperthermia,” J. Electron. Mater., vol. 45, pp. 2644-2650, 2016, doi: 10.1007/s11664-016-4457-x.

[7] H. M. Do, T. H. Le, X. P. Nguyen, H. N. Pham, T. H. Ngo, T. H. Nguyen, T. P. Pham, M. H. Phan, J. Kovac, and I. Skorvanek, “Oxidation-controlled magnetism and Verwey transition in Fe/Fe3O4lamellae,” J. Sci.: Adv. Mater. Dev., vol. 5, pp. 263-269, 2020, doi: 10.1016/j.jsamd.2020.04.001.

[8] S. Wang, M. Zhang, Q. Liu, P. Zhang, K. Zhang, and X. Kong, “Synthesis of chain-like ɑ-Fe/Fe3O4 core/shell composites exhibiting enhanced microwave absorption performance in high-frequency under an ultrathin matching thickness,” J. Mater. Sci. Mater. Electron., vol. 29, pp. 21040-21050, 2018, doi: 10.1007/s10854-018-0250-3.

[9] S. Yamamuro and T. Tanaka, “Exchange-coupled Fe/Fe3O4 magnetic nanocomposite powder prepared by eutectoid decomposition of FeO,” J. Ceram. Soc. Japan, vol. 126, pp. 152-155, 2019, doi: 10.2109/jcersj2.17237.

[10] P. Brahma, S. Banerjee, D. Das, P. K. Mukhopadhyay, S. Chatterjee, A. K. Nigam, and D. Chakravorty, “Properties of nanocomposites of α-Fe and Fe3O4,” J. Magn. Magn. Matter., vol. 246, pp. 162-168, 2002, doi: 10.1016/S0304-8853(02)00044-6.

[11] Q. K. Ong, X. M. Lin, and A. Wei, “The role of frozen spins in the exchange anisotropy of core/shell Fe@Fe3O4 nanoparticles,” J. Phys. Chem. C, vol. 115, pp. 2665-2672, 2011, doi: 10.1021/jp110716g.

[12] F. Walz, “The Verwey transition - a topical review,” J. Phys.: Condens. Mater., vol. 14, pp. R285-R340, 2002, doi: 10.1088/0953-8984/14/12/203.

[13] G. F. Goya, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys., vol. 94, pp. 3520-3528, 2003, doi: 10.1063/ 1.1599959.

[14] A. Mitra, J. Mohapatra, S. S. Meena, C. V. Tomy, and M. Aslam, “Verwey transition in ultrasmall-sized octahedral Fe3O4 nanoparticles,” J. Phys. Chem. C, vol. 118, pp. 19356-19362, 2014, doi: 10.1021/jp501652e.

[15] E. Bonetti, L. Del Bianco, and S. Signoretti, “Synthesis by ball milling and characterization of nanocrystalline Fe3O4 and Fe/Fe3O4 composite system,” J. Appl. Phys., vol. 89, 2001, Art. no. 1806, doi: 10.1063/1.1339855.

[16] F. C. C. Moura, M. H. Araujo, R. C. C. Costa, J. D. Fabris, J. D. Ardisson, W. A. A. Macedo, and R. M. Lago, “Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe/Fe3O4 composites,” Chemosphere, vol. 60, 2005, Art. no. 1118, doi: 10.1016/ j.chemosphere.2004.12.076.

[17] L. J. Zhao, H. Yang, S. Li, L. Yu, Y. Cui, X. Zhao, and S. Feng, “The effect of aging time and calcination temperature on the magnetic properties of α-Fe/Fe3O4 composite,” J. Magn. Magn. Mater., vol. 301, pp. 287-291, 2006, doi: 10.1016/j.jmmm.2005.07.029.

[18] T. Park, S. Sambasivan, D. Fischer, W. Yoon, J. Misewich, and S. Wong, “Electronic Structure and Chemistry of Iron-Based Metal Oxide Nanostructured Materials: A NEXAFS Investigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4,” J. Phys. Chem. C, vol. 112, pp. 10359–10369, 2008, doi: 10.1021/jp801449p.

[19] K. Tokumitsu and T. Nasu, “Preparation of lamellar structured α-Fe/Fe3O4 complex particle by thermal decomposition of wustite,” Scr. Mater., vol. 44, pp. 1421-1424, 2001, doi: 10.1016/S1359-6462(01)00851-X.

[20] N. N. Song, H. T. Yang, X. Ren, Z. A. Li, Y. Luo, J. Shen, W. Dai, X. Q. Zhang, and Z. H. Cheng, “Non-monotonic size change of monodisperse Fe3O4 nanoparticles in the scale-up synthesis,” Nanoscale, vol. 5, pp. 2804-2810, 2013, doi: 10.1039/C3NR33950E.

[21] M. H. Phan, J. Alonso, H. Khurshid, P. L. Kelley, S. Chandra, K. S. Repa, Z. Nemati, R. Das, O. Iglesias, and H. Srikanth, “Exchange bias effects in iron oxide-based nanoparticle systems,” Nanomaterials, vol. 6, 2018, Art. no. 221, doi: 10.3390/nano6110221.

[22] S. H. Moon, S. Noh, J. H. Lee, T. H. Shin, Y. Lim, and J. Cheon, “Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring,” Nano letters, vol. 17, pp. 800-804, 2017, doi: 10.1021/acs.nanolett.6b04016.

[23] J. M. D. Coey, Magnetism and Magnetic Materials. Cambridge University Press, New York, 2009.

[24] X. Sun, N. F. Huls, A. Sigdel, and S. Sun, “Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles,” Nano Lett., vol. 12, pp. 246-251, 2012, doi: 10.1021/nl2034514.

[25] G. F. Goya, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys., vol. 94, pp. 3520-3528, 2003, doi: 10.1063/ 1.1599959.

[26] A. Mitra, J. Mohapatra, S. S. Meena, C. V. Tomy, and M. Aslam, “Verwey transition in ultrasmall-sized octahedral Fe3O4 nanoparticles,” J. Phys. Chem. C, vol. 118, pp. 19356-19362, 2014, doi: 10.1021/jp501652e.




DOI: https://doi.org/10.34238/tnu-jst.6436

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved