EMPIRICAL EVALUATION OF HIGH-SPEED MACHINING AND HEATING SUPPORT ON CUTTING TOOL WEAR AND SURFACE ROUGHNESS DURING PROCESSING OF HEAT-TREATED SKD61 STEEL
About this article
Received: 15/05/23                Revised: 24/05/23                Published: 24/05/23Abstract
Keywords
Full Text:
PDFReferences
[1] Z. Q. Liu, X. Ai, H. Zhang, Z. T. Wang, and Y. Wan, “Wear patterns and mechanisms of cutting tools in high-speed face milling,” J. Mater. Process. Technol., vol. 129, no. 1–3, pp. 222–226, 2002, doi: 10.1016/S0924-0136(02)00605-2.
[2] X. Cui and J. Zhao, “Cutting performance of coated carbide tools in high-speed face milling of AISI H13 hardened steel,” Int. J. Adv. Manuf. Technol., vol. 71, no. 9–12, pp. 1811–1824, 2014, doi: 10.1007/s00170-014-5611-3.
[3] V. D. Calatoru, M. Balazinski, J. R. R. Mayer, H. Paris, and G. L’Espérance, “Diffusion wear mechanism during high-speed machining of 7475-T7351 aluminum alloy with carbide end mills,” Wear, vol. 265, no. 11–12, pp. 1793–1800, 2008, doi: 10.1016/j.wear.2008.04.052.
[4] T. H. Nguyen, T. B. Mac, V. C. Tong, T. L. Banh, and D. T. Nguyen, “A study on the cutting force and chip shrinkage coefficient in high-speed milling of A6061 aluminum alloy,” Int. J. Adv. Manuf. Technol., vol. 98, no. 1–4, pp. 177–188, 2018, doi: 10.1007/s00170-017-1063-x.
[5] C. Wang, Y. Xie, L. Zheng, Z. Qin, D. Tang, and Y. Song, “Research on the Chip Formation Mechanism during the high-speed milling of hardened steel,” Int. J. Mach. Tools Manuf., vol. 79, pp. 31–48, 2014, doi: 10.1016/j.ijmachtools.2014.01.002.
[6] P. Lezanski and M. C. Shaw, “Tool face temperatures in high speed milling,” J. Manuf. Sci. Eng. Trans. ASME, vol. 112, no. 2, pp. 132–135, 1990, doi: 10.1115/1.2899555.
[7] X. Tian, J. Zhao, J. Zhao, Z. Gong, and Y. Dong, “Effect of cutting speed on cutting forces and wear mechanisms in high-speed face milling of Inconel 718 with Sialon ceramic tools,” Int. J. Adv. Manuf. Technol., vol. 69, no. 9–12, pp. 2669–2678, 2013, doi: 10.1007/s00170-013-5206-4.
[8] T.-B. Mac, T.-T. Luyen, and D.-T. Nguyen, “The Impact of High-Speed and Thermal-Assisted Machining on Tool Wear and Surface Roughness during Milling of SKD11 Steel,” Metals, vol. 13, 2023, Art. no. 971, doi: 10.3390/met13050971.
[9] T.-B. Mac, T.-T. Luyen, and D.-T. Nguyen, “Assessment of the Effect of Thermal-Assisted Machining on the Machinability of SKD11 Alloy Steel,” Metals, vol. 13, 2023, Art. no. 699, doi: 10.3390/met 13040699.
[10] P. D. Tran and D. T. Nguyen, “A study on the investigation of the microstructure of SKD61 steel after selected quenching and tem-pering processes,” Mod. Phys. Lett. B, 2023, Art. no. 2340022, doi: 10.1142/S0217984923400225.
[11] T. L. Ginta and A. K. M. N. Amin, “Thermally-assisted end milling of titanium alloy Ti-6Al-4V using induction heating,” Int. J. Mach. Mach. Mater., vol. 14, no. 2, pp. 194–212, 2013, doi: 10.1504/IJMMM.2013.055737.
[12] R. B. Da Silva, Á. R. MacHado, E. O. Ezugwu, J. Bonney, and W. F. Sales, “Tool life and wear mechanisms in high speed machining of Ti-6Al-4V alloy with PCD tools under various coolant pressures,” J. Mater. Process. Technol., vol. 213, no. 8, pp. 1459–1464, 2013, doi: 10.1016/j.jmatprotec.2013.03.008.
[13] L. Özler, A. Inan, and C. Özel, “Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel,” Int. J. Mach. Tools Manuf., vol. 41, no. 2, pp. 163–172, 2001, doi: 10.1016/S0890-6955(00)00077-8.
DOI: https://doi.org/10.34238/tnu-jst.7949
Refbacks
- There are currently no refbacks.





