EFFICIENCY ASSESSMENT OF APPLYING PHOTOVOLTAIC SOLAR PANEL IN MORNING GLORY FARMING SYSTEM IN TRI TON DISTRICT, AN GIANG PROVINCE
About this article
Received: 30/03/24                Revised: 09/07/24                Published: 10/07/24Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] S. J. Thomas, S. Thomas, S. S. Sahoo, A. K. G, and M. M. Awad, “Solar parks: A review on impacts, mitigation mechanism through agrivoltaics and techno-economic analysis,” Energy Nexus, vol. 11, p. 100220, Sep. 2023, doi: 10.1016/j.nexus.2023.100220.
[2] S. Thomas, A. G. Kumar, S. Sahoo, and S. Varghese, “Energy and exergy analysis of solar thermal energy-based polygeneration processes for applications in rural India,” International Energy Journal, vol. 18, pp. 243–256, Mar. 2018.
[3] M. M. Awad, A. Rout, S. Thomas, and S. S. Sahoo, “Techno-economic analysis of solar photovoltaic-thermal system viability,” in Solar Energy Harvesting, Conversion, and Storage, Elsevier, 2023, pp. 319–362, doi: 10.1016/B978-0-323-90601-2.00005-2.
[4] A. González, H. Sandoval, P. Acosta, and F. Henao, “On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective,” Sustainability, vol. 8, no. 11, pp. 1–21, Nov. 2016, doi: 10.3390/su8111171.
[5] A. P. D. Goetzberger and A. Zastrow, “On the coexistence of solar-energy conversion and plant cultivation,” International Journal of Solar Energy, vol. 1, pp. 55–69, 1982.
[6] M. A. Z. Abidin, M. N. Mahyuddin, and M. A. A. M. Zainuri, “Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review,” Sustainability, vol. 13, no. 14, 2021, doi: 10.3390/su13147846.
[7] J. Terrapon-Pfaff, T. Fink, P. Viebahn, and E. M. Jamea, “Social impacts of large-scale solar thermal power plants: Assessment results for the NOORO I power plant in Morocco,” Renewable and Sustainable Energy Reviews, vol. 113, p. 109259, Oct. 2019, doi: 10.1016/j.rser.2019.109259.
[8] A. S. Pascaris, C. Schelly, L. Burnham, and J. M. Pearce, “Integrating solar energy with agriculture: Industry perspectives on the market, community, and socio-political dimensions of agrivoltaics,” Energy Res. Soc. Sci., vol. 75, p. 102023, May 2021, doi: 10.1016/j.erss.2021.102023.
[9] T. Harinarayana and K. S. V. Vasavi, “Solar energy generation using agriculture cultivated lands,” Smart Grid and Renewable Energy, vol. 5, no. 2, 2014.
[10] P. R. Malu, U. S. Sharma, and J. M. Pearce, “Agrivoltaic potential on grape farms in India,” Sustainable Energy Technologies and Assessments, vol. 23, pp. 104–110, 2017.
[11] M. Trommsdorff et al., “Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany,” Renewable and Sustainable Energy Reviews, vol. 140, p. 110694, 2021.
[12] T. T. H. Cu, M. P. Vu, and T. N. Nguyen, “Study on Performance and Economic Efficiency of Solar Power on Agricultural Land: A case study in Central Region, Vietnam,” International Journal of Renewable Energy Research, Vol.11, No.2, pp. 842–850, 2021.
[13] M. P. Vu, T. T. H. Nguyen, T. H. Pham, V. D. Pham, and V. B. Doan, “Assessment of rooftop solar power technical potential in Hanoi city, Vietnam,” Journal of Building Engineering, vol. 32, pp. 1–11, Nov. 2020, doi: 10.1016/j.jobe.2020.101528.
[14] People Committee of Tri Ton District, “Report of social – economic development for Tri Ton district,” (in Vietnamese), 2020.
[15] The World Bank, “Global Solar Atlas 2.0.” [Online]. Available: https://globalsolaratlas.info. [Accessed Mar. 18, 2024].
[16] M. Kadowaki, A. Yano, F. Ishizu, T. Tanaka, and S. Noda, “Effects of greenhouse photovoltaic array shading on Welsh onion growth,” Biosyst Eng, vol. 111, no. 3, pp. 290–297, Mar. 2012, doi: 10.1016/j.biosystemseng.2011.12.006.
[17] M. H. Riaz, H. Imran, R. Younas, M. A. Alam, and N. Z. Butt, “Module technology for agrivoltaics: vertical bifacial versus tilted monofacial farms,” IEEE J. Photovolt., vol. 11, no. 2, pp. 469–477, 2021.
[18] P. Santra, P. C. Pande, S. Kumar, D. Mishra, and R. K. Singh, “Agri-voltaics or solar farming: The concept of integrating solar PV based electricity generation and crop production in a single land use system,” International Journal of Renewable Energy Research, vol. 7, no. 2, pp. 694-699, 2017.
[19] W. Lytle et al., “Conceptual design and rationale for a new agrivoltaics concept: Pasture-raised rabbits and solar farming,” J. Clean Prod., vol. 282, p. 124476, 2021.
[20] C. Dupraz, H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, “Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes,” Renew Energy, vol. 36, no. 10, pp. 2725–2732, 2011.
[21] M. Kumpanalaisatit, “Design and Test of Agri-Voltaic System,” Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 12, no. 8, pp. 2395–2404, 2021.
[22] B. Valle et al., “Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops,” Appl Energy, vol. 206, pp. 1495–1507, 2017.
[23] N. Chen, P. Wu, Y. Gao, and X. Ma, “Review on Photovoltaic Agriculture Application and Its Potential on Grape Farms in Xinjiang, China,” Advances in Sciences and Engineering, vol. 10, no. 2, p. 73, 2018.
[24] J. P. Gittinger, Economic Analysis of Agricultural Projects. Baltimore: Johns Hopkins Univ. Press, 1996.
DOI: https://doi.org/10.34238/tnu-jst.9994
Refbacks
- There are currently no refbacks.





