NGHIÊN CỨU BIẾN THỂ DI TRUYỀN MỘT SỐ GENE LIÊN KẾT TÍNH TRẠNG TĂNG TRƯỞNG CỦA CÁ CHÉP BẰNG PHƯƠNG PHÁP GIẢI TRÌNH TỰ HỆ GENE RNA
Thông tin bài báo
Ngày nhận bài: 13/02/25                Ngày hoàn thiện: 16/07/25                Ngày đăng: 16/07/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] Food and Agriculture Organization (FAO), “The State of World Fisheries and Aquaculture 2024: Blue Transformation in action,” Network of Aquaculture Centres in Asia-Pacific, 2025. [Online]. Available: https://enaca.org/?id=1337. [Accessed Mar. 18, 2025].
[2] M. T. Tran and T. C. Nguyen, “Selection of common carp (Cyprinus carpio L.) in Vietnam,” Aquaculture, vol. 111, pp. 301–302, 1993.
[3] B. Muslimin and B. Retnoaji, “Polymorphism in exon 4 of snakehead fish (Channa striata) growth hormone gene from Sumatra (Indonesia) and its association with growth traits,” AACL Bioflux, vol. 13, no. 5, pp. 3163-3174. 2020.
[4] D. G. de la Serrana and D. J. Macqueen, “Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes,” Frontiers in Endocrinology, vol. 9, 2018. [Online]. Available: https://www.frontiersin.org/ articles/10.3389/fendo.2018.00080. [Accessed Feb. 04, 2023].
[5] M. Rajesh et al., “Molecular characterisation and transcriptional regulation of muscle growth regulatory factors myogenin and myogenic factor 6 in the Trans-Himalayan cyprinid fish Schizothorax richardsonii,” Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol. 231, pp. 188–200, May 2019, doi: 10.1016/j.cbpa.2019.02.007.
[6] W. Joyce, “Muscle growth and plasticity in teleost fish: the significance of evolutionarily diverse sarcomeric proteins,” Rev. Fish Biol. Fisheries, vol. 33, no. 4, pp. 1311–1327, Dec. 2023, doi: 10.1007/s11160-023-09800-8.
[7] R. Wenne, “Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations,” Genes (Basel), vol. 14, no. 4, Mar. 2023, doi: 10.3390/genes 14040808.
[8] U. Borthakur, “SNP and InDel Identification and Annotation from RNA-Sequencing Data,” AFJBS, vol. 6, no. 7, pp. 3233–3244, Jun. 2024, doi: 10.48047/AFJBS.6.7.2024.3233-3244.
[9] Novogene, "Novogene," 2025. [Online]. Available: https://www.novogene.com/amea-en/. [Accessed May. 15, 2025].
[10] S. Andrews, “Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data,” 2024. [Online]. Available: https://www.bioinformatics.babraham.ac.uk/ projects/fastqc/. [Accessed Apr. 20, 2024].
[11] M. Anthony, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer for Illumina sequence data | Bioinformatics | Oxford Academic,” Bioinformatics, vol. 30, no. 15, pp. 2114–2120, 2014.
[12] D. Kim, B. Langmead, and S. L. Salzberg, “HISAT: a fast spliced aligner with low memory requirements,” Nat Methods, vol. 12, no. 4, pp. 357–360, Apr. 2015, doi: 10.1038/nmeth.3317.
[13] F. Richter et al., “Whole Genome De Novo Variant Identification with FreeBayes and Neural Network Approaches,” bioRxiv, Mar. 25, 2020, doi: 10.1101/2020.03.24.994160.
[14] P. Cingolani, “Variant Annotation and Functional Prediction: SnpEff,” in Variant Calling: Methods and Protocols, C. Ng and S. Piscuoglio, Eds., New York, NY: Springer US, 2022, pp. 289–314, doi: 10.1007/978-1-0716-2293-3_19.
[15] J. I. Bertucci, A. M. Blanco, L. Sundarrajan, J. J. Rajeswari, C. Velasco, and S. Unniappan, “Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish,” Front. Endocrinol., vol. 10, Feb. 2019, doi: 10.3389/fendo.2019.00083.
[16] P. Xu et al., “Genome sequence and genetic diversity of the common carp, Cyprinus carpio,” Nat. Genet., vol. 46, no. 11, pp. 1212–1219, Nov. 2014, doi: 10.1038/ng.3098.
[17] J. Xu et al., “Genome-Wide SNP Discovery from Transcriptome of Four Common Carp Strains,” PLOS ONE, vol. 7, no. 10, Oct. 2012, Art. no. e48140, doi: 10.1371/journal.pone.0048140.
[18] G. Gao et al., “A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing,” Front. Genet., vol. 9, Apr. 2018, doi: 10.3389/fgene.2018.00147.
[19] J. Yang and M. Adli, “Mapping and Making Sense of Noncoding Mutations in the Genome,” Cancer Research, vol. 79, no. 17, pp. 4309–4314, Sep. 2019, doi: 10.1158/0008-5472.CAN-19-0905.
[20] T. T. H. Tran, H. T. Nguyen, B. T. N. Le, P. H. Tran, S. V. Nguyen, and O. T. P. Kim, “Characterization of single nucleotide polymorphism in IGF1 and IGF1R genes associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878),” Aquaculture, vol. 538, May 2021, Art. no. 736542, doi: 10.1016/j.aquaculture.2021.736542.
[21] N. I. Jing, Y. O. U. Feng, and X. U. Jianhe, “Single nucleotide polymorphisms in intron 1 and intron 2 of Larimichthys crocea growth hormone gene are correlated with growth traits,” Chinese Journal of Oceanology and Limnology, Jan. 2012. [Online]. Available: https://www.academia.edu/88099483/ Single_nucleotide_polymorphisms_in_intron_1_and_intron_2_of_Larimichthys_crocea_growth_hormone_gene_are_correlated_with_growth_traits. [Accessed Feb. 08, 2025].
[22] S. K. K. Jaser, M. A. D. Dias, A. de A. Lago, R. V. R. Neto, and A. W. S. Hilsdorf, “Single nucleotide polymorphisms in the growth hormone gene of Oreochromis niloticus and their association with growth performance,” Aquaculture Research, vol. 48, no. 12, pp. 5835–5845, 2017, doi: 10.1111/are.13406.
[23] J. H. Xia et al., “Signatures of selection in tilapia revealed by whole genome resequencing,” Sci. Rep., vol. 5, no. 1, Sep. 2015, Art. no. 14168, doi: 10.1038/srep14168.
[24] A. C. Bertolotti et al., “The structural variation landscape in 492 Atlantic salmon genomes,” Nat Commun, vol. 11, no. 1, Oct. 2020, Art. no. 5176, doi: 10.1038/s41467-020-18972-x.
[25] F. Zhang and J. R. Lupski, “Non-coding genetic variants in human disease,” Hum. Mol. Genet., vol. 24, no. R1, pp. R102–R110, Oct. 2015, doi: 10.1093/hmg/ddv259.
[26] X. Feng, X. Yu, M. Pang, H. Liu, and J. Tong, “Molecular characterization and expression of three preprosomatostatin genes and their association with growth in common carp (Cyprinus carpio),” Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol. 182, pp. 37–46, Apr. 2015, doi: 10.1016/j.cbpb.2014.12.001.
[27] T. T. H. Tran, B. T. N. Le, S. V. Nguyen, and O. T. P. Kim, “Non-synonymous polymorphism in IGFBP-3 gene associated with growth traits in striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878),” Vietnam Journal of Biotechnology, vol. 21, no. 2, Jun. 2023, Art. no. 2, doi: 10.15625/1811-4989/18240.
DOI: https://doi.org/10.34238/tnu-jst.12042
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





