NGHIÊN CỨU CHẾ TẠO COMPOSITE HỢP KIM TITAN GIA CƯỜNG VỚI VẬT LIỆU TẤM BO NITRUA BẰNG KỸ THUẬT THIÊU KẾT XUNG PLASMA
Thông tin bài báo
Ngày nhận bài: 05/05/25                Ngày hoàn thiện: 24/09/25                Ngày đăng: 24/09/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] W. Abd-Elaziem, M. A. Darwish, A. Hamada, and W. M. Daoush, "Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review," Materials & Design, vol. 241, 2024, Art. no. 112850.
[2] M. Najafizadeh, S. Yazdi, M. Bozorg, et al., "Classification and applications of titanium and its alloys: A review," Journal of Alloys and Compounds Communications, vol. 3, 2024, Art. no. 100019.
[3] D. K. Ammisetti, S. S. H. Kruthiventi, and S. Vinjavarapu, "A review on reinforcements, fabrication methods, and mechanical and wear properties of titanium metal matrix composites," Journal of Engineering and Applied Science, vol. 71, 2024, doi: 10.1186/s44147-024-00392-z.
[4] S. X. Liang, K. Y. Liu, L. X. Yin, G. W. Huang, Y. D. Shi, L. Y. Zheng, and Z. G. Xing, "Review of major technologies improving surface performances of Ti alloys for implant biomaterials," Journal of Vacuum Science & Technology A, vol. 40, 2022, Art. no. 030801.
[5] P. E. Markovsky, J. Janiszewski, O. O. Stasyuk, V. I. Bondarchuk, D. G. Savvakin, K. Cieplak, et al., "Mechanical behavior of titanium based metal matrix composites reinforced with TiC or TiB particles under quasi-static and high strain-rate compression," Materials, vol. 14, 2021, Art. no. 6837.
[6] S. Ali, P. M. Ismail, M. Humayun, and M. Bououdina, "Hexagonal boron nitride: From fundamentals to applications," Desalination, vol. 599, 2025, Art. no. 118442.
[7] C. Zhi, Y. Bando, T. Terao, M. Mitome, C. Tang, and D. Golberg, "Towards thermoconductive, electrically insulating polymer composites with boron nitride nanotubes as fillers," Advanced Functional Materials, vol. 19, no. 12, pp. 1857-1862, 2009.
[8] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, et al., "Large scale growth and characterization of atomic hexagonal boron nitride layers," Nano Letters, vol. 10, no. 8, pp. 3209-3215, 2010.
[9] J. S. Lim, I. S. Oliveira, S. Azevedo, A. Freitas, et al., "Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain," RSC Advances, vol. 11, no. 56, pp. 35127-35140, 2021.
[10] M. Topsakal, S. Cahangirov, and S. Ciraci, "The response of mechanical and electronic properties of graphane to the elastic strain," Applied Physical Letters, vol. 96, no. 9, 2010, Art. no. 091912.
[11] A. Falin, Q. Cai, E. J. G. Santos, D. Scullion, D. Qian, et al., "Mechanical properties of atomically thin boron nitride and the role of interlayer interactions," Nature Communication, vol. 8, no. 1, 2017, Art. no. 15815.
[12] T. Han, Y. Luo, and C. Wang, "Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets," Journal of Physic D: Applied Physic, vol. 47, no. 2, 2013, Art. no. 025303.
[13] H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, et al., "High thermal conductivity of suspended few-layer hexagonal boron nitride sheets," Nano Research, vol. 7, no. 8, pp. 1232-1240, 2014.
[14] H. Feng, Y. Zhou, D. Jia, and Q. Meng, "Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering," Composites Science and Technology, vol. 6, no. 16, pp. 2495-2500, 2004.
[15] D. K. Ammisetti and S. S. H. Kruthiventi, "Recent trends on titanium metal matrix composites: A review," Materials Today: Proceedings, vol. 46, pp. 9730–9735, 2021.
[16] J. Benzing, N. Hrabe, T. Quinn, R. White, R. Rentz, and M. Ahlfors, "Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V)," Materials Letters, vol. 257, 2019, Art. no. 126690.
[17] O. E. Falodun, B. A. Obadele, S. R. Oke, et al., "Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review," The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 1689–1701, 2019.
[18] K. A. Kusters, S. E. Pratsinis, S. G. Thoma, and D. M. Smith, "Ultrasonic fragmentation of agglomerate powders," Chemical Engineering Science, vol. 48, no. 24, pp. 4119-4127, 1993.
[19] F. Rikhtegar, S. G. Shabestari, and H. Saghafian, "The homogenizing of carbon nanotube dispersion in aluminium matrix nanocomposite using flake powder metallurgy and ball milling methods," Powder Technology, vol. 280, pp. 26-34, 2015.
[20] P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 10, pp.1345-1367, 2010.
[21] D. P. Doan, V. H. Tran, N. M. Phan, D. T. Nguyen, J. Morgiel, et al., "Mechanical and wear properties of 2D material (GO, BNNP) reinforced magnesium matrix composite consolidated by spark plasma sintering,” MRS Communications, vol. 15, pp. 279–284, 2025.
[22] V. T. Nguyen, V. H. Tran, et al., "Preparation, thermal and lubricant properties of paraffin based nanofluid containing boron nitride nanoplatelets," Materials Letters, vol. 381, 2025, Art. no. 137765.
DOI: https://doi.org/10.34238/tnu-jst.12721
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





