NGHIÊN CỨU DOCKING PHÂN TỬ VÀ ĐẶC TÍNH GIỐNG THUỐC CỦA HỢP CHẤT SAPONIN T-17 PHÂN LẬP TỪ LOÀI Tupistra chinensis Baker
Thông tin bài báo
Ngày nhận bài: 14/07/25                Ngày hoàn thiện: 14/08/25                Ngày đăng: 14/08/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram, and A. Jemal, “Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 74, no. 3, pp. 229–263, May 2024.
[2] V. Mansouri, N. Beheshtizadeh, M. Gharibshahian, L. Sabouri, M. Varzandeh, and N. Rezaei, “Recent advances in regenerative medicine strategies for cancer treatment,” Biomed. Pharmacother., vol. 141, 2021, Art. no. 111875.
[3] G. Leng, B. Duan, J. Liu, S. Li, W. Zhao, S. Wang, G. Hou, and J. Qu, “The advancements and prospective developments in anti-tumor targeted therapy,” Neoplasia, vol. 56, 2024, Art. no. 101024.
[4] M. A. Rahman, S. M. Rakib-Uz-Zaman, S. Chakraborti, S. K. Bhajan, R. D. Gupta, M. Jalouli, M. A. Parvez, M. H. Shaikh, E. Hoque Apu, A. H. Harrath, S. Moon, and B. Kim, “Advancements in utilizing natural compounds for modulating autophagy in liver cancer: Molecular mechanisms and therapeutic targets,” Cells, vol. 13, no. 14, 2024, Art. no. 1186.
[5] T. Koseki, K. Yamato, S. Krajewski, J. C. Reed, Y. Tsujimoto, and T. Nishihara, “Activin A-induced apoptosis is suppressed by BCL-2,” FEBS Lett., vol. 376, no. 3, pp. 247–250, 1995.
[6] M. Li, D. Wang, J. He, L. Chen, and H. Li, “Bcl-XL: A multifunctional anti-apoptotic protein,” Pharmacol. Res., vol. 151, 2020, Art. no. 104547.
[7] A. Ohtsu, S. Arai, T. Sawada, M. Kato, Y. Maeno, Y. Miyazawa, Y. Fujizuka, Y. Sekine, H. Koike, H. Matsui, and K. Suzuki, “Fibroblast growth factor receptor inhibitor erdafitinib promotes Mcl-1 degradation and synergistically induces apoptosis with Bcl-xL/Bcl-2 inhibitor in urothelial cancer cells,” Biochem. Biophys. Res. Commun., vol. 628, pp. 76–83, 2022.
[8] S. Bouabdallah, A. Al-Maktoum, and A. Amin, “Steroidal saponins: Naturally occurring compounds as inhibitors of the hallmarks of cancer,” Cancers, vol. 15, no. 15, 2023, Art. no. 3900.
[9] D. Lu, L. Huang, and C. Weng, “Unveiling the novel anti-tumor potential of digitonin, a steroidal saponin, in gastric cancer: A network pharmacology and experimental validation study,” Drug Des. Devel. Ther., vol. 19, pp. 2653–2666, 2025.
[10] J. Xu, Z. Wang, Y. Huang, Y. Wang, L. Xiang, and X. He, “A spirostanol saponin isolated from Tupistra chinensis Baker simultaneously induces apoptosis and autophagy by regulating the JNK pathway in human gastric cancer cells,” Steroids, vol. 164, 2020, Art. no. 108737.
[11] N. D. C. Q. Bojórquez and M. R. S. Campos, “Traditional and novel computer-aided drug design (CADD) approaches in the anticancer drug discovery process,” Curr. Cancer Drug Targets, vol. 23, no. 5, pp. 333-345, 2023.
[12] E. Lionta, G. Spyrou, D. K. Vassilatis, and Z. Cournia, “Structure-based virtual screening for drug discovery: principles, applications and recent advances,” Curr. Top. Med. Chem., vol. 14, no. 16, pp. 1923-1938, 2014.
[13] K. Kaavin, D. Naresh, M. R. Yogeshkumar, M. K. Prakash, S. Janarthanan, M. M. Krishnan, and M. Malathi, “In-silico DFT studies and molecular docking evaluation of benzimidazo methoxy quinoline-2-one ligand and its Co, Ni, Cu and Zn complexes as potential inhibitors of Bcl-2, Caspase-3, EGFR, mTOR, and PI3K, cancer-causing proteins,” Chem. Phys. Impact, vol. 8, 2024, Art. no. 100418.
[14] S. Zhang, K. Liu, Y. Liu, X. Hu, and X. Gu, “The role and application of bioinformatics techniques and tools in drug discovery,” Front. Pharmacol., vol. 16, 2025, Art. no. 1547131.
[15] C. V. Hoang, T. Q. Tu, H. D. Nguyen, and M. H. Chu, “In silico studies of saponins from Hoya verticillata var. verticillate with important apoptosis potency,” Lett. Org. Chem., vol. 22, no. 11, pp. 1-9, 2025.
[16] H. Zhou, J. Chen, J. L. Meagher, C.-Y. Yang, A. Aguilar, L. Liu, L. Bai, X. Cong, Q. Cai, X. Fang, J. A. Stuckey, and S. Wang, “Design of Bcl-2 and Bcl-xL Inhibitors with subnanomolar binding affinities based upon a new scaffold,” J. Med. Chem., vol. 55, no. 10, pp. 4664–4682, 2012.
[17] L. L. G. Ferreira and A. D. Andricopulo, “ADMET modeling approaches in drug discovery,” Drug Discov. Today, vol. 24, no. 5, pp. 1157–1165, 2019.
[18] D. E. V. Pires, T. L. Blundell, and D. B. Ascher, “pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures,” J. Med. Chem., vol. 58, no. 9, pp. 4066–4072, 2015.
[19] R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, and A. K. Varma, “Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing,” PLoS One, vol. 5, no. 8, 2010, Art. no. e12029.
[20] G. Deogratias, D. M. Shadrack, J. J. E. Munissi, G. A. Kinunda, F. R. Jacob, R. P. Mtei, R. J. Masalu, I. Mwakyula, L. W. Kiruri, and S. S. Nyandoro, “Hydrophobic π-π stacking interactions and hydrogen bonds drive self-aggregation of luteolin in water,” J. Mol. Graph. Model., vol. 116, 2022, Art. no. 108243.
[21] C. M. Roth, B. L. Neal, and A. M. Lenhoff, “Van der Waals interactions involving proteins,” Biophys. J., vol. 70, no. 2, pp. 977–987, 1996.
[22] M. Y. Alsedfy, A. A. Ebnalwaled, M. Moustafa, and A. H. Said, “Investigating the binding affinity, molecular dynamics, and ADMET properties of curcumin-IONPs as a mucoadhesive bioavailable oral treatment for iron deficiency anemia,” Sci. Rep., vol. 14, no. 1, 2024, Art. no. 22027.
[23] D. Dahlgren and H. Lennernäs, “Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches,” Pharmaceutics, vol. 11, no. 8, 2019, Art. no. 411.
DOI: https://doi.org/10.34238/tnu-jst.13226
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





