CÔNG NGHỆ XỬ LÝ ĐẤT Ô NHIỄM CHÌ BẰNG THỰC VẬT | Vân | TNU Journal of Science and Technology

CÔNG NGHỆ XỬ LÝ ĐẤT Ô NHIỄM CHÌ BẰNG THỰC VẬT

Thông tin bài báo

Ngày nhận bài: 08/04/24                Ngày hoàn thiện: 31/05/24                Ngày đăng: 31/05/24

Các tác giả

1. Lương Thị Thúy Vân Email to author, Trường Đại học Sư phạm - ĐH Thái Nguyên
2. Hoàng Thị Chanh, Trường Đại học Sư phạm - ĐH Thái Nguyên
3. Cao Thị Phương Thảo, Trường Đại học Sư phạm - ĐH Thái Nguyên

Tóm tắt


Tách chiết chất ô nhiễm bằng thực vật (phytoextraction) là công nghệ đã và đang được quan tâm nghiên cứu, ứng dụng để chiết xuất hoặc loại bỏ Pb khỏi môi trường ô nhiễm. Phương pháp này được đánh giá là một giải pháp công nghệ hiệu quả, thân thiện với môi trường và chi phí thấp. Dựa trên các thông tin và số liệu đã được công bố trong nhiều năm, bài viết này nhằm tổng hợp và phân tích các cách tiếp cận khác nhau nhằm giảm thiểu những hạn chế của phương pháp tách chiết thực vật tự nhiên (không có sự can thiệp vào chất nền cũng như công cụ xử lý) như tách chiết thực vật kết hợp với chelate; tách chiết thực vật kết hợp với vi khuẩn hoặc nấm rễ; tách chiết thực vật kết hợp với công nghệ gen nhằm rút ngắn thời gian xử lý, tăng cường hấp thụ và tích lũy Pb trong các bộ phận của cây. Mặc dù còn nhiều yếu tố cần hoàn thiện về mặt nguyên lý và kĩ thuật xử lý nhưng những kết quả bước đầu đã khẳng định đây là phương pháp hoàn toàn hiệu quả, phù hợp và khả thi để xử lý những vùng đất ô nhiễm chì theo xu hướng ứng dụng công nghệ xanh bảo vệ môi trường.

Từ khóa


Phytoextraction; Hấp thụ; Tích tụ; Chì; Công nghệ gene

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1] ATSDR, CERCLA priority list of hazardous substances. Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences, Atlanta, 2019.

[2] D. C. Adriano, “Lead,in Trace Elements in Terrestrial Environments, D. C. Adriano (Ed.), New York, NY: Springer, 2001, pp.349–410.

[3] H. B. Bradl, Heavy Metals in the Environment, vol. 6, Elsevier Ltd., 2005, pp. 17-21.

[4] I. Thornton, R. Rautiu, and S. Brush, LEAD the facts, London, UK: IC Consultants Ltd, 2001.

[5] D. A. Gidlow, “Lead toxicity,” Occupational Medicine, vol.54, pp. 76–81, 2004.

[6] D. E. Salt, M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, D. Ensley, I. Chet, and I. Raskin, “Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants,” Biotechnology, vol. 13, pp. 468–474, 1995, doi: 10.1038/nbt0595-468.

[7] Ministry of Natural Resources and Environment, QCVN 03:2023/BTNMT: National Technical Regulations on Soil Quality 3-6, December 12, 2023.

[8] B. V. Tangahu, S. R. S. Abdullah, H. Basri, M. Idris, N. Anuar, and M. Mukhlisin, “A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation,” International Journal of Chemical Engineering, vol. 31, pp.155–185, 2011, doi: 10.1155/2011/939161.

[9] W. Sidhoum and Z. Fortas, “The beneficial role of indigenous arbuscular mycorrhizal fungi in phytoremediation of wetland plants and tolerance to metal stress,” Archives of Environmental Protection, vol. 45, pp. 103–114, 2019, doi: 10.24425/aep.2019.125916.

[10] M. Shahid, E. Pinelli, and C. Dumat, “Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands,” Journal of Hazardous Materials, vol. 219-220, pp. 1–12, 2012.

[11] F. A. Vega, M. L. Andrade, and E. F. Covelo, “Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses,” Journal of Hazardous Materials, vol. 174, pp. 522–533, 2010.

[12] E. E. V. Chapman, G. Dave, and J. D. Murimboh, “Bioavailability as a factor in risk assessment of metalcontaminated soil,” Water, Air and Soil Pollution, vol. 223, pp. 2907–2922, 2012.

[13] G. Daldoul, R. Souissi, H. Tlil, D. Elbahri, O. El Hamiani, N. Chebbi, et al., “Assessment of heavy metal toxicity in soils contaminated by a former Pb–Zn mine and tailings management using flotation process, Jebel Ghozlane, Northern Tunisia,” Environmental Earth Sciences, vol. 78, 2019, Art. no. 703.

[14] I. Anastopoulos, I. Massas, E. Pogka, I. Chatzipavlidis and C. Ehaliotis, “Organic materials may greatly enhance Ni and Pb progressive immobilization into the oxidisable soil fraction, acting as providers of sorption sites and microbial substrates,” Geoderma, vol. 353, pp. 482–492, 2019.

[15] Z. Michálková, M. Komárek, H. Šillerová, L. Della Puppa, E. Joussein, F. Bordas, et al., “Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils,” Journal of Environmental Management, vol. 146, pp. 226–234, 2014.

[16] D. L. Sparks, Environmental soil chemistry, 2nd Ed., London, UK: Academic Press, 2003.

[17] P. Punamiya, R. Datta, D. Sarkar, S. Barber, M. Patel, and P. Das “Symbiotic role of Glomus mosseae in phytoextraction of lead in Vetiver grass (Chrysopogon zizanioides L.),” Journal of Hazardous Materials, vol. 177, pp. 465–474, 2010.

[18] K. T. Lim, M. Y. Shukor, and H. Wasoh, “Physical, chemical, and biological methods for the removal of arsenic compounds,BioMed Research International, vol. 2014, pp. 1-9, 2014, doi: 10.1155/2014/503784.

[19] D. E. Salt, R. Smith, and I. Raskin, “Phytoremediation,” Annual Review of Plant Biology, vol. 49, no. 1, pp. 643–668, 1998.

[20] V. C. Pandey, D. N. Pandey, and N. Singh, “Sustainable phytoremediation based on naturally colonizing and economically valuable plants,” Journal of Cleaner Production, vol. 86, pp. 37–39, 2015.

[21] H. Sarma, N. Forid, R. Prasad, M. N. V. Prasad, L. Q. Ma, and J. Rinklebe, “Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology,” Journal of Hazardous Materials, vol. 414, pp. 1-12, 2021, doi: 10.1016/j.jhazmat.2021.125493.

[22] S. Sonowal, A. R. Nava, S. J. Joshi, S. N. Borah, N. F. Islam, S. Pandit, R. Prasad, and H. Sarma, “Biosurfactants assisted heavy metals phytoremediation: green technology for the United Nations sustainable development goals,” Pedosphere, vol. 2, no. 1, pp. 198–210, 2022, doi: 10.1016/S1002-0160 (21)60067-X.

[23] J. Suman, O. Uhlik, J. Viktorova, and T. Macek, “Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment?” Frontiers in Plant Science, vol. 9, p. 1476, 2018.

[24] R. A. Wuana and F. E. Okieimen, “Heavy Metals in Contaminated Soils: A review of sources, chemistry, risks and best available strategies for remediation,” ISRN Ecology, vol. 2011, pp. 1–20, 2011, doi: 10.5402/2011/402647.

[25] A. J. M. Baker, S. P. McGrath, C. M. D. Sidoli, and R. D. Reeves, “The posibility of insitu heavy metal decontamination of polluted soils using crops of metal-accumulating plants,” Resources Conservation Recycling, vol. 11, pp. 41-49, 1994.

[26] S. Tandy, R. Schulin, and B. Nowack, “The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers,” Chemosphere, vol. 62, pp. 1454–1463, 2006.

[27] B. E. Pivetz, Phytoremediation of contaminated soil and groundwater at hazardous waste sites, Washington: US Environmental Protection Agency, 2001.

[28] A. J. M. Baker and R. R. Brooks, “Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry,” Biorecovery, vol. 1, pp. 81-126, 1989.

[29] H. Sarma, “Metal hyperaccumulation in plants: a review focusing on phytoremediation technology,” Journal of Environmental Science and Technology, vol. 4, no. 2, pp. 118-138, 2011.

[30] R. Prasad (Editor), Phytoremediation for Environmental Sustainability, Springer, 2021, doi: 10.1007/978-981-16-5621-7.

[31] P. Tanhan, P. Pokethitiyook, M. Kruatrachue, R. Chaiyarat, and S. Upatham, “Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: Greenhouse and field trial experiments,” International Journal of Phytoremediation, vol. 13, pp. 897–911, 2011.

[32] Y. T Tang, R. L. Qiu, X. W. Zeng, R. R. Ying, F. M. Yu, and X. Y. Zhou, “Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch,” Environmental and Experimental Botany, vol. 66, pp. 126–134, 2009.

[33] S. K. Tian, L. L. Lu, X. E. Yang, S. M. Webb, Y. H. Du, and P. H. Brown, “Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation,” Environmental Science & Technology, vol. 44, pp. 5920–5926, 2010.

[34] Y. L. Han, S. Z. Huang, J. G. Gu, S. Qiu, and J. M. Chen, “Tolerance and accumulation of lead by species of Iris L.,” Ecotoxicology, vol. 17, no. 8, pp. 853–859, 2008.

[35] M. Arshad, J. Silvestre, E. Pinelli, J. Kallerhoff, M. Kaemmerer, A. Tarigo, A. Shahid, M. Guiresse, P. Pradere, and C. Dumat, “A field study of lead phytoextraction by various scented pelargonium cultivars,” Chemosphere, vol. 71, pp. 2187–2192, 2008.

[36] P. Rotkittikhun, M. Kruatrachue, R. Chaiyarat, C. Ngernsansaruay, P. Pokethitiyook, A. Paijitprapaporn, and A. J. M. Baker, “Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand,” Environmental Pollution, vol. 144, pp. 681–688, 2006.

[37] K. Vogel-Mikus, D. Drobne, and M. Regvar, “Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia,” Environmental Pollution, vol. 133, pp. 233–242, 2005.

[38] D. K. Gupta, H. G. Huang, and F. J. Corpas, “Lead tolerance in plants: strategies for phytoremediation,” Environmental Science Pollution Research, vol. 20, pp. 2150–2161, 2013, doi: 10.1007/s11356-013-1485-4.

[39] D. K. Dang, D. Le, V. T. Tran, T. K. A. Bui, and T. A. Dang, Phytoremediation, Agricultural Publisher Vietnam, 2011.

[40] W. S. Shu, H. P. Xia, Z. Q. Zhang, C. Y. Lan, and M. H. Wong, “Use of Vetiver and three other grasses for revegetation of Pb/Zn mine tailings: Field experiment,” International Journal of Phytoremediation, vol. 4, pp. 47–57, 2022.

[41] O. P. Abioye, P. Agamuthu, and A. A. Abdul, “Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus,” Biodegradation, vol. 23, pp. 277–286, 2012.

[42] H. Zaier, T. Ghnaya, A. Lakhdar, R. Baioui, R. Ghabriche, M. Mnasri, S. Sghair, S. Lutts, and C. Abdelly, “Comparative study of Pb phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation,” Journal of Hazardous Materials, vol. 183, pp. 609–615, 2010.

[43] L. J. Zheng, X. M. Liu, U. Lutz-Meindl, and T. Peer, “Effects of lead and EDTA-assisted lead on biomass, lead uptake and mineral nutrients in Lespedeza chinensis and Lespedeza davidii,” Water, Air and Soil Pollution, vol. 220, pp. 57–68, 2011.

[44] C. C. Lin, J. Liu, L. Liu, T. C. Zhu, L. X. Sheng, and D. L. Wang, “Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels,” Environmental and Experimental Botany, vol. 65, pp. 410–416, 2009.

[45] M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochimica Acta Part B, vol. 63, pp. 1225–1229, 2008.

[46] S. S. Andra, R. Datta, D. Sarkar, et al., “Analysis of phytochelatin complexes in the lead tolerant vetiver grass Vetiveria zizanioides (L.) using liquid chromatography and mass pectrometry,” Environmental Pollution, vol. 157, pp. 2173-2183, 2009.

[47] M. Komárek, P. Tlustoã, J. Száková, et al., “The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils,” Environmental Pollution, vol. 151, pp. 27-38, 2008.

[48] Y. Cho, J. A. Bolick, and D. J. Butcher, “Phytoremediation of lead with Green onions (Allium fistulosum) and uptake of arsenic compounds by moonlight Ferns (Pteris cretica cv. Mayii),” Microchemical Journal, vol. 91, pp. 6-8, 2009.

[49] P. Zhuang, W. Shu, Z. Li, et al., “Removal of metals by sorghum plants from contaminated land,” Journal of Environmental Sciences, vol. 21, pp. 1432-1437, 2009.

[50] E. V. D. Freitas and C. W. A. do Nascimento, “The use of NTA for lead phytoextraction from soil from a battery recycling site,” Journal of Hazardous Materials, vol. 171, pp. 833–837, 2009.

[51] X. Wang, Y. Wang, Q. Mahmood, E. Islam, X. F. Jin, T. Q. Li, X. E. Yang, and D. Liu, “The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance,” Journal of Hazardous Materials, vol. 168, pp. 530–535, 2009.

[52] S. K. Singh and S. A. Ramprakash, “Phytoextraction of lead from Pb contaminated soil by Brassica juncea as affected by chelating agents,” Environment and Ecology, vol. 27, no. 2A, pp. 971-974, 2009.

[53] E. Meers, F. M. G. Tack, S. Van Slycken, A. Ruttens, G. D. Laing, J. Vangronsveld, and M. G. Verloo, “Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals,” International Journal of Phytoremediation, vol. 10, pp. 390–414, 2008.

[54] M. Israr and S. V. Sahi, “Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots,” Environmental Pollution, vol. 153, pp. 29–36, 2008.

[55] S. K. Tian, L. L. Lu, X. E. Yang, H. G. Huang, P. Brown, J. Labavitch, H. B. Liao, and Z. L. He, “The impact of EDTA on lead distribution and speciation in the accumulator Sedum alfredii by synchrotron Xray investigation,” Environmental Pollution, vol. 159, pp. 782–788, 2011.

[56] H. G. Huang, T. X. Li, S. K. Tian, D. K. Gupta, X. Z. Zhang, and X. E. Yang, “Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H.,” Bioresource Technology, vol. 99, pp. 6088–6096, 2008.

[57] Z. G. Shen, X. D. Li, C. C. Wang, et al., “Lead Phytoextraction from Contaminated Soil with High-Biomass Plant Species,” Journal of Environmental Quality, vol. 3, pp.1893-1900, 2002.

[58] G. D. L. Rosa, J. R. Peralta-Videa, G. Cruz-Jimenez, M. Duarte-Gardea, A. Martinez-Martinez, I. Cano-Aguilera, N. C. Sharma, S. V. Sahi, and J. L. Gardea-Torresdey, “Role of ethylenediaminetetraacetic acid on lead uptake and translocation by Tumbleweed (Salsola kali L.),” Environmental Toxicology and Chemistry, vol. 26, no. 5, pp. 1033–1039, 2009.

[59] R. Prasad, S. C. Nayak, R. N. Kharwar, and N. K. Dubey, Mycoremediation and environmental sustainability, vol. 3, Springer, 2021.

[60] V. Kumar, R. Prasad, and M. Kumar, Rhizobiont in bioremediation of hazardous waste, Springer, Singapore, 2021.

[61] M. Jitchanok, N. S. Thomas, and P. Benjaphorn, “Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions,” Environmental Technology & Innovation, vol. 33, pp. 1-15, 2024, doi: 10.1016/j.eti.2023.103488.

[62] M. Miransari, “Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals,” Biotechnology Advances, vol. 29, pp. 645–653, 2011.

[63] P. Waranusantigul, H. Lee, M. Kruatrachue, P. Pokethitiyook, and C. Auesukaree, “Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis,” Chemosphere, vol. 85, pp. 584–590, 2011.

[64] H. Sarma, N. Forid, R. Prasad, M. N. V. Prasad, L. Q. Ma, and J. Rinklebe, “Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology,” Journal of Hazardous Materials, vol. 414, pp. 1-12, 2021, doi: 10.1016/j.jhazmat.2021.125493.

[65] W. He, M. Megharaj, C. Y. Wu, S. R. Subashchandrabose, and C. C. Dai, “Endophyteassisted phytoremediation: echanisms and current application strategies for soil mixed pollutants,” Critical Reviews in Biotechnology, vol. 40, pp. 31–45, 2020, doi: 10.1080/07388551.2019.1675582.

[66] C. Y. Jiang, X. F. Sheng, M. Qian, and Q. Y. Wang, “Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil,” Chemosphere, vol. 72, pp. 157–164, 2008.

[67] X. F. Sheng, C. Y. Jiang, and L. Y. He, “Characterization of plant growth promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil,” Canadian Journal of Microbiology, vol. 54, no. 5, pp. 417–422, 2008, doi: 10.1139/w08-020.

[68] X. F. Sheng, J. J. Xia, C. Y. Jiang, L. Y. He, and M. Qian, “Characterization of heavy metal-resistant endophytic bacteria from Rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of Rape,” Environmental Pollution, vol. 156, pp. 1164–1170, 2008.

[69] Z. Deng, L. Cao, H. Huang, X. Jiang, W. Wang, Y. Shi, and R. Zhang, “Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from Rapes (Brassica chinensis) in a metalcontaminated soil,” Journal of Hazardous Materials, vol. 185, pp. 717–724, 2011.

[70] Z. Deng, R. Zhang, Y. Shi, L. Hu, H. Tan, and L. Cao, “Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59,” Chemosphere, vol. 91, pp. 41–47, 2013.

[71] E. Malekzadeh, N. Aliasgharzad, J. Majidi, J. Abdolalizadeh, and L. Aghebati-Maleki, “Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant,” European Journal of Soil Biology, vol. 74, pp. 45–51, 2016, doi: 10.1016/j. ejsobi.2016.03.003.

[72] J. Schneider, J. Bundschuh, and C. Nascimento, “Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site,” Science of The Total Environment, vol. 572, pp. 86–97, 2016, doi: 10.1016/j.scitotenv.2016.07.185.

[73] M. Sheikh-Assadi, A. Khandam-Mirkohi, A. Alemardan, and E. Moreno-Jiménez, “Mycorrhizal Limonium sinuatum (L.) Mill. enhances accumulation of lead and cadmium,” International Journal of Phytoremediation, vol. 17, pp. 556–562, 2015, doi: 10.1080/15226514.2014.922928.

[74] V. K. Sharma, X. Y. Li, G. L. Wu, et al., “Endophytic community of Pb-Zn hyperaccumulator Arabis alpina and its role in host plants metal tolerance,” Plant and Soil, vol. 437, pp. 397–411, 2019, doi: 10.1007/s11104-019-03988-0.

[75] A. Ali, S. Bilal, and A. L. Khan, “Endophytic Aureobasidium pullulans BSS6 assisted developments in phytoremediation potentials of Cucumis sativus under Cd and Pb stress,” Journal of Plant Interaction, vol. 14, no. 1, pp. 303–313, 2019, doi: 10.1080/17429145.2019.1633428.

[76] X. X. Li, X. Zhang, X. L. Wang, X. Y. Yang, and Z. J. Cui, “Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum,” Chemosphere, vol. 224, pp. 716–725, 2019, doi: 10.1016/j.Chemosphere.2019.02.184.

[77] R. Monica, C. Paola, G. Elisa, M. Mery, and F. Debora, “Bioremediation Methods for the Recovery of Lead-Contaminated Soils: A Review,” Appied Science, vol.10, pp. 1-17, 2020, doi:10.3390/app10103528.

[78] A. P. G. C. Marques, A. O. S. S. Rangel, and P. M. L. Castro, “Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology,” Critical Reviews in Environmental Science and Technology, vol. 39, no. 8, pp. 622-654, 2009.

[79] P. Kotrba, J. Najmanova, T. Macek, et al., “Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution,” Biotechnology Advances, vol. 27, pp. 799- 810, 2009.

[80] V. Hooda, “Phytoremediation of toxic metals from soil and wastewater,” Journal of Environmental Biology, vol. 28, no. 2, pp. 367-376, 2007.

[81] I. Raskin, R. D. Smith, and D. E. Salt, “Phytoremediation of metals: using plants to remove pollutants from the environment,” Current Opinion in Biotechnology , vol. 8, pp. 221-226, 1997, doi: 10.1016/S0958-1669(97)80106-1.

[82] R. B. Meagher, “Phytoremediation of toxic elemental and organic pollutants,” Current Opinion in Biotechnology, vol. 3, pp. 153-162, 2000.

[83] S. P. McGrath and F. J. Zhao, “Phytoextraction of metals and metalloids from contaminated soils,” Current Opinion in Biotechnology, vol. 14, pp. 277-282, 2003.

[84] T. Arazi, R. Sunkar, B. Kaplan, and H. Fromm, “A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants,” The Plant Journal, vol. 20, pp. 171–182, 1999.

[85] W. Y. Song, E. J. Sohn, E. Martinoia, Y. J. Lee, Y. Y. Yang, M. Jasinski, C. Forestier, I. Hwang, and Y. Lee, “Engineering tolerance and accumulation of lead and cadmium in transgenic plants,” Nature Biotechnology, vol. 21, pp. 914–919, 2003.

[86] M. S. U. Bhuiyan, S. R. Min, W. J. Jeong, S. Sultana, K. S. Choi, W. Y. Song, Y. Lee, Y. P. Lim, and J. R. Liu, “Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea,” Plant Cell, Tissue and Organ Culture, vol. 105, pp. 85–91, 2011.

[87] C. Gisbert, R. Ros, A. De Haro, D. J. Alker, M. P. Bernal, R. Serrano, and J. Navarro-Avino, “A plant genetically modified that accumulates Pb is especially promising for phytoremediation,” Biochemical and Biophysical Research Communications, vol. 303, pp. 440–445, 2003.




DOI: https://doi.org/10.34238/tnu-jst.10060

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved