ƯỚC LƯỢNG KIỂU HÌNH HẠT LÚA BẰNG PHƯƠNG PHÁP ĐỔI HỆ MÀU VÀ PHÂN ĐOẠN ẢNH DỰA TRÊN HỌC SÂU
Thông tin bài báo
Ngày nhận bài: 23/04/24                Ngày hoàn thiện: 10/06/24                Ngày đăng: 11/06/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] M. Tester and P. Langridge, "Breeding technologies to increase crop production in a changing world," Science, vol. 327, no. 5967, pp. 818-822, 2010, doi: 10.1126/science.1183700.
[2] Q. Zhang, "Strategies for developing green super rice," Proceedings of the National Academy of Sciences, vol. 104, no. 42, pp. 16402-16409, 2007, doi: 10.1073/pnas.0708013104.
[3] J. Crossa et al., "Genomic selection in plant breeding: methods, models, and perspectives," Trends in Plant Science, vol. 22, no.11, pp. 961-975, 2017, doi: 10.1016/j.tplants.2017.08.011.
[4] M. Watt et al., "Phenotyping: new windows into the plant for breeders," Annual Review of Plant Biology, vol. 71, pp. 689-712, 2020, doi: 10.1146/annurev-arplant-042916-041124.
[5] D. Sun et al., "Advances in optical phenotyping of cereal crops," Trends in Plant Science, vol. 27, no.2, pp. 191-208, 2022, doi: 10.1016/j.tplants.2021.07.015.
[6] C. L. Huang et al., "Development of a whole-feeding and automatic rice thresher for single plant," Mathematical and Computer Modelling, vol. 58, no. 3-4, pp. 684-690, 2013, doi: 10.1016/j.mcm.2011.10.033.
[7] A. P. Whan et al., "GrainScan: a low cost, fast method for grain size and colour measurements," Plant methods, vol. 10, pp. 1-10, 2014, doi: 10.1186/1746-4811-10-23.
[8] S. Y. Tan et al., "Segmentation and counting algorithm for touching hybrid rice grains," Computers and Electronics in Agriculture, vol. 162, pp. 493-504, 2019, doi: 10.1016/j.compag.2019.04.030.
[9] S. B. Liu et al., "Estimating maize seedling number with UAV RGB images and advanced image processing methods," Precision Agriculture, vol. 23, no. 5, pp. 1604-1632, 2022, doi: 10.1007/s11119-022-09899-y.
[10] W. Wu et al., "Image analysis-based recognition and quantification of grain number per panicle in rice," Plant Methods, vol. 15, pp. 1-14, 2019, doi: 10.1186/s13007-019-0510-0.
[11] Kumar, J. Praveen, and S. Domnic, "Image based leaf segmentation and counting in rosette plants," Information Processing in Agriculture, no. 6, no. 2, pp. 233-246, 2019, doi: 10.1016/j.inpa.2018.09.005.
[12] W. N. Yang et al., "Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives," Molecular plant, vol. 13, no. 2, pp. 187-214, 2020, doi: 10.1016/j.molp.2020. 01.008.
[13] D. Wang et al., "The development of a vision-based phenotypic analysis algorithm for measuring spikelet-related traits in rice," Plant Physiology Journal, vol. 58, no. 5, pp. 957-971, 2022, doi: 10.13592/j.cnki.ppj.200009.
[14] L. Su and P. Chen, "A method for characterizing the panicle traits in rice based on 3D micro-focus X-ray computed tomography," Computers and Electronics in Agriculture, vol. 166, 2019, Art. no. 104984, doi: 10.1016/j.compag.2019.104984.
[15] W. J. Hu et al., "Nondestructive 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography," Plant Phenomics, 2020, doi: 10.34133/2020/3414926.
[16] L. J. Yu et al., "An integrated rice panicle phenotyping method based on X-ray and RGB scanning and deep learning," The Crop Journal, vol. 9, no. 1, pp. 42-56, 2021, doi: 10.1016/j.cj.2020.06.009.
[17] J. Terven, D.-M Córdova-Esparza, and J.-A. Romero-González, "A comprehensive review of yolo architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS," Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680-1716, 2023, doi:10.3390/make5010007.
[18] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO (Version 8.0.0),” 2023. [Computer software]. Available: https://github.com/ultralytics/ultralytics. [Accessed March 10, 2024].
[19] T. Tanabata et al., "SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis," Plant physiology, vol. 160, no. 4, pp. 1871-1880, 2012, doi: 10.1104/pp.112.205120.
[20] Y. W. Lu et al., "High-throughput and separating-free phenotyping method for on-panicle rice grains based on deep learning," Frontiers in Plant Science, vol. 14, 2023, Art. no. 1219584, doi: 10.3389/fpls.2023.1219584.
DOI: https://doi.org/10.34238/tnu-jst.10191
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu