NGHIÊN CỨU CÁC PHIÊN BẢN YOLOv8 VÀ YOLO-NAS TRONG PHÁT HIỆN BIỂN SỐ XE
Thông tin bài báo
Ngày nhận bài: 09/05/24                Ngày hoàn thiện: 10/06/24                Ngày đăng: 11/06/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] P. Viola and M. J. Jones, "Robust Real-Time Face Detection," International Journal of Computer Vision, vol. 57, pp. 137–154, 2004, doi.org/10.1023/B:VISI.0000013087.49260.fb.
[2] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, vol. 1, pp. 886-893, doi: 10.1109/CVPR.2005.177.
[3] P. Felzenszwalb, D. McAllester, and D. Ramanan, "A discriminatively trained, multiscale, deformable part model," 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 1-8, doi: 10.1109/CVPR.2008.4587597.
[4] J. Chen, Z. Liu, H. Wang, A. Núñez, and Z. Han, "Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network," IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 2, pp. 257-269, Feb. 2018, doi: 10.1109/TIM.2017.2775345.
[5] Q. Guo, L. Liu, W. Xu, Y. Gong, X. Zhang, and W. Jing, "An Improved Faster R-CNN for High-Speed Railway Dropper Detection," IEEE Access, vol. 8, pp. 105622-105633, 2020, doi: 10.1109/ACCESS.2020.3000506.
[6] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, June 2017, doi: 10.1109/TPAMI.2016.2577031.
[7] V. L. Trinh, T. L. T. Dao, X. T. Le, and E. Castelli, "Emotional Speech Recognition Using Deep Neural Networks," Sensors, vol. 22, 2022, Art. no. 1414, doi: 10.3390/s22041414.
[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
[9] W. Liu, et al., "SSD: Single Shot MultiBox Detector," in Computer Vision – ECCV 2016. ECCV 2016, Lecture Notes in Computer Science, vol. 9905, B. Leibe, J. Matas, N. Sebe, and M. Welling, (eds). Springer, Cham, 2016, doi.org/10.1007/978-3-319-46448-0_2.
[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal Loss for Dense Object Detection," Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988, doi: 10.48550/arXiv.1708.02002.
[11] S. S. Patil et al., "Vehicle Number Plate Detection using YoloV8 and EasyOCR," 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-4, doi: 10.1109/ICCCNT56998.2023.10307420.
[12] D. Mane, P. Kumbharkar, S. Sangve, N. Earan, K. Patil, and S. Bonde, "A Metaphor Analysis on Vehicle License Plate Detection using Yolo-NAS and Yolov8," Journal of Electrical Systems, vol. 20, no. 1s, pp. 152-164, 2024, doi:10.52783/jes.761.
[13] D. L. Nguyen, V. N. Nguyen, and V. D. Dang, "Building a License Plate Recognition Application with OpenCV Open Source" (in Vietnamese), Quang Binh Journal for Science and Technology Information, vol. 1, pp. 35-40, 2018.
[14] T.-A. Dat, K. L. Tran, and H.-N. Vu, “License Plate Recognition Based on MULTI-ANGLE View Model,” arXiv:2309.12972, 2023, doi: 10.48550/arXiv.2309.12972.
[15] H. Shi and D. Zhao, "License Plate Recognition System Based on Improved YOLOv5 and GRU," IEEE Access, vol. 11, pp. 10429-10439, 2023, doi: 10.1109/ACCESS.2023.3240439.
[16] R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz, and D. Menotti, "Anefficient and layout-independent automatic license platerecognition system based on the YOLO detector," IETIntell Transp Syst., vol. 15, pp. 483–503, 2021, doi: 10.1049/itr2.12030.
[17] S. Pan, J. Liu, and D. Chen, "Research on License Plate Detection and Recognition System based on YOLOv7 and LPRNet," Academic Journal of Science and Technology, vol. 4, no. 2, pp. 62-68, 2023, doi: 10.54097/ajst.v4i2.3971
[18] S. Mejdl, A. Abdulmalik, and A. Sultan, "Efficient Multistage License Plate Detection and Recognition Using YOLOv8 and CNN for Smart Parking Systems," Journal of sensors, 2024, doi: 10.1155/2024/4917097.
[19] D. A. Mulia, S. Safitri, and G. P. K. Negara, "YOLOv8 and Faster R-CNN Performance Evaluation with Super-resolution in License Plate Recognition," International Journal of Computing and Digital Systems, 2024, doi: 10.12785/ijcds/160129.
DOI: https://doi.org/10.34238/tnu-jst.10336
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu