TỔNG QUAN CẬP NHẬT CÁC YẾU TỐ ĐỘC LỰC CỦA VI KHUẨN GÂY BỆNH ĐƯỜNG RUỘT MỚI NỔI Escherichia alberii
Thông tin bài báo
Ngày nhận bài: 19/05/24                Ngày hoàn thiện: 17/12/24                Ngày đăng: 18/12/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] M. J. Albert et al., "Hafnia alvei, a probable cause of diarrhea in humans," Infect Immun, vol. 59, no. 4, pp. 1507-1513, 1991, doi: 10.1128/iai.59.4.1507-1513.
[2] M. J. Albert et al., "Sharing of virulence-associated properties at the phenotypic and genetic levels between enteropathogenic Escherichia coli and Hafnia alvei," J Med Microbiol, vol. 37, no. 5, pp. 310-314, 1992, doi: 10.1099/00222615-37-5-310.
[3] J. M. Janda, S. L. Abbott, and M. J. Albert, "Prototypal diarrheagenic strains of Hafnia alvei are actually members of the genus Escherichia," J Clin Microbiol, vol. 37, no. 8, pp. 2399-2401, 1999, doi:10.1128/JCM.37.8.2399-2401.
[4] A. Ismaili, B. Bourke, J. C. de Azavedo, S. Ratnam, M. A. Karmali, and P. M. Sherman, "Heterogeneity in phenotypic and genotypic characteristics among strains of Hafnia alvei," J Clin Microbiol, vol. 34, no. 12, pp. 2973-2979, 1996, doi: 10.1128/jcm.34.12.2973-2979.
[5] G. Huys, M. Cnockaert, J. M. Janda, and J. Swings, "Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children," International Journal of Systematic and Evolutionary Microbiology, vol. 53, no. 3, pp. 807-810, 2003, doi: 10.1099/ijs.0.02475-0.
[6] J. M. Janda, S. L. Abbott, and M. J. Albert, "Prototypal diarrheagenic strains of Hafnia alvei are actually members of the genus Escherichia," J Clin Microbiol, vol. 37, no. 8, pp. 2399-2401, 1999, doi: 10.1128/JCM.37.8.2399-2401.
[7] S. L. Abbott, J. O'Connor, T. Robin, B. L. Zimmer, and J. M. Janda, "Biochemical properties of a newly described Escherichia species, Escherichia albertii," J Clin Microbiol, vol. 41, no. 10, pp. 4852-4854, 2003, doi: 10.1128/jcm.41.10.4852-4854.
[8] K. E. Hyma et al., "Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains," Journal of bacteriology, vol. 187, no. 2, pp. 619-628, Jan 2005, doi: 10.1128/jb.187.2.619-628.2005.
[9] J. L. Oaks et al., "Escherichia albertii in wild and domestic birds," Emerg Infect Dis, vol. 16, no. 4, pp. 638-646, 2010, doi: 10.3201/eid1604.090695.
[10] A. F. Maheux, D. K. Boudreau, M. G. Bergeron, and M. J. Rodriguez, "Characterization of Escherichia fergusonii and Escherichia albertii isolated from water," J Appl Microbiol, vol. 117, no. 2, pp. 597-609, 2014, doi: 10.1111/jam.12551.
[11] T. Ooka et al., "Clinical significance of Escherichia albertii," Emerg Infect Dis, vol. 18, no. 3, pp. 488-492, 2012, doi: 10.3201/eid1803.111401.
[12] N. Asoshima et al., "Identification of Escherichia albertii as a causative agent of a food-borne outbreak occurred in 2003," Jpn J Infect Dis, vol. 67, no. 2, pp. 139-140, 2014, doi: 10.7883/yoken.67.139.
[13] A. Baba et al., "An outbreak of water-borne gastroenteritis caused by diarrheagenic Escherichia coli possessing eae gene," Jpn J Infect Dis, vol. 59, no. 1, pp. 59-60, 2006.
[14] T. Ooka et al., "Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli," Genome Biol Evol, vol. 7, no. 12, pp. 3170-3179, 2015, doi: 10.1093/gbe/evv211.
[15] T. Konno et al., "Isolation and identification of Escherichia albertii from a patient in an outbreak of gastroenteritis," Jpn J Infect Dis, vol. 65, no. 3, pp. 203-207, 2012, doi: 10.7883/yoken.65.203.
[16] T. Ooka et al., "Human gastroenteritis outbreak associated with Escherichia albertii, Japan," Emerg Infect Dis, vol. 19, no. 1, pp. 144-1446, 2013, doi: 10.3201/eid1901.120646.
[17] M. P. Lima et al., "Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil," Pathog Dis, vol. 77, no. 2, p. ftz014, 2019, doi: 10.1093/femspd/ftz014.
[18] K. Masuda et al., "Epidemiological aspects of Escherichia albertii outbreaks in Japan and genetic characteristics of the causative pathogen," Foodborne Pathog Dis, vol. 17, no. 2, pp. 144-150, 2020, doi: 10.1089/fpd.2019.2654.
[19] F. Muchaamba, K. Barmettler, A. Treier, K. Houf, and R. Stephan, "Microbiology and epidemiology of Escherichia albertii—an emerging elusive foodborne pathogen," Microorganisms, vol. 10, no. 5, p. 875, 2022.
[20] J. L. Oaks et al., "Escherichia albertii in wild and domestic birds," (in eng), Emerg Infect Dis, vol. 16, no. 4, pp. 638-46, 2010, doi: 10.3201/eid1604.090695.
[21] K. Barmettler, M. Biggel, A. Treier, F. Muchaamba, and R. Stephan, "Livestock as possible reservoir of Escherichia albertii in Switzerland," Schweiz Arch Tierheilkd, vol. 165, no. 5, pp. 299-306, 2023, doi: 10.17236/sat00393.
[22] L. Grillová et al., "Characterization of four Escherichia albertii isolates collected from animals living in Antarctica and Patagonia," J Vet Med Sci, vol. 80, no. 1, pp. 138-146, 2018, doi: 10.1292/jvms.17-0492.
[23] M. A. Croxen and B. B. Finlay, "Molecular mechanisms of Escherichia coli pathogenicity," Nat Rev Microbiol, vol. 8, no. 1, pp. 26-38, 2010, doi: 10.1038/nrmicro2265.
[24] T. A. T. Gomes, T. Ooka, R. T. Hernandes, D. Yamamoto, and T. Hayashi, "Escherichia albertii Pathogenesis," EcoSal Plus, vol. 9, no. 1, 2020, doi: 10.1128/ecosalplus.ESP-0015-2019.
[25] H. Wang et al., "Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China," Epidemiol Infect, vol. 144, no. 1, pp. 45-52, 2016, doi: 10.1017/S0950268815001120.
[26] S. Arai et al., "Detection of Escherichia albertii in Retail Oysters," J Food Prot, vol. 85, no. 1, pp. 173-179, 2022, doi: 10.4315/jfp-21-222.
[27] H. Wang et al., "Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China," Epidemiology & Infection, vol. 144, no. 1, pp. 45-52, 2016.
[28] N. M. Saad, M. S. Sabreen, W. F. Amin, and M. K. Gendi, "Prevalence of Escherichia albertii and other Escherichia species in raw milk and some dairy products in Assiut City, Egypt," Journal of American Science, vol. 8, no. 11, pp. 333-341, 2012.
[29] G. Fiedler et al., "Draft genome sequence of the intimin-positive enteropathogenic Escherichia albertii strain MBT-EA1, isolated from lettuce," Genome Announc, vol. 6, no. 15, 2018, doi: 10.1128/genomea. 00255-18.
[30] T. Takara et al., "Escherichia albertii food poisoning due to consumption of Nigana shiraae, seasoned mixed salad of nigana (Ixeris dentata) and tofu, May 2016—Okinawa Prefecture," Infect. Agents Surveill. Rep, vol. 37, pp. 252-253, 2016.
[31] W. h. i. Australia, "Facsheet: Escherichia albertii in bird in Australia," 2022. [Online]. Available: https://www.wildlifehealthaustralia.com.au/Portals/0/Documents/FactSheets/Avian/Escherichia%20albertii%20in%20Birds%20in%20Australia%20Nov%202013%20(2.1). [Accessed February 27, 2022].
[32] J. Y. Oh, M. S. Kang, H. T. Hwang, B. K. An, J. H. Kwon, and Y. K. Kwon, "Epidemiological investigation of eaeA-positive Escherichia coli and Escherichia albertii strains isolated from healthy wild birds," J Microbiol, vol. 49, no. 5, pp. 747-752, 2011, doi: 10.1007/s12275-011-1133-y.
[33] R. M. La Ragione, I. M. McLaren, G. Foster, W. A. Cooley, and M. J. Woodward, "Phenotypic and genotypic characterization of avian Escherichia coli O86:K61 isolates possessing a gamma-like intimin," Appl Environ Microbiol, vol. 68, no. 10, pp. 4932-4942, 2002, doi: 10.1128/aem.68.10.4932-4942.
[34] K. Barmettler, M. Biggel, A. Treier, F. Muchaamba, B. R. Vogler, and R. Stephan, "Occurrence and characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland," Microorganisms, vol. 10, no. 11, 2022, doi: 10.3390/microorganisms10112265.
[35] R. L. Lindsey, P. J. Fedorka-Cray, M. Abley, J. B. Turpin, and R. J. Meinersmann, "Evaluating the occurrence of Escherichia albertii in chicken carcass rinses by PCR, Vitek analysis, and sequencing of the rpoB gene," Applied and environmental microbiology, vol. 81, no. 5, pp. 1727-1734, 2015, doi: 10.1128/AEM.03681-14.
[36] N. Asoshima et al., "Isolation of Escherichia albertii from raw chicken liver in Fukuoka city, Japan," Jpn J Infect Dis, vol. 68, no. 3, pp. 248-250, 2015, doi: 10.7883/yoken.JJID.2014.530.
[37] A. Naka, A. Hinenoya, S. P. Awasthi, and S. Yamasaki, "Isolation and characterization of Escherichia albertii from wild and safeguarded animals in Okayama Prefecture and its prefectural borders, Japan," J Vet Med Sci, vol. 84, no. 9, pp. 1299-1306, 2022, doi: 10.1292/jvms.22-0213.
[38] M. Biggel, K. Barmettler, A. Treier, F. Muchaamba, and R. Stephan, "Draft genome sequences of two Escherichia albertii Isolates collected from healthy pets in Switzerland," Microbiol Resour Announc, vol. 12, no. 3, p. e0135622, 2023, doi: 10.1128/mra.01356-22.
[39] R. J. Bengtsson et al., "The genomic epidemiology of Escherichia albertii infecting humans and birds in Great Britain," Nat. Commun, vol. 14, no. 1, p. 1707, 2023, doi: 10.1038/s41467-023-37312-3.
[40] M. P. Lima et al., "Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil," Pathog Dis, vol. 77, no. 2, 2019, doi: 10.1093/femspd/ftz014.
[41] R. L. Lindsey, L. A. Rowe, D. Batra, P. Smith, and N. A. Strockbine, "PacBio genome sequences of eight Escherichia albertii Strains isolated from humans in the United States," Microbiol Resour Announc, vol. 8, no. 9, pp. e01663-18, 2019, doi: 10.1128/MRA.01663-18.
[42] M. A. Sulaiman, M. Aminu, E. E. Ella, and I. O. Abdullahi, "Prevalence and risks factors of the novel Escherichia albertii among gastroenteritis patients in Kano State, Nigeria," Journal of Medicine in the Tropics, vol. 23, no. 1, pp. 39-45, 2021, doi: 10.4103/jomt.jomt_34_20.
[43] T. Ooka et al., "Human gastroenteritis outbreak associated with Escherichia albertii, Japan," (in eng), Emerg Infect Dis, vol. 19, no. 1, pp. 144-146, 2013, doi: 10.3201/eid1901.120646.
[44] L. T. Brandal, H. S. Tunsjø, T. E. Ranheim, I. Løbersli, H. Lange, and A. L. Wester, "Shiga toxin 2a in Escherichia albertii," J Clin Microbiol, vol. 53, no. 4, pp. 1454-1455, 2015, doi: 10.1128/jcm.03378-14.
[45] T. J. Inglis, A. J. Merritt, N. Bzdyl, S. Lansley, and M. N. Urosevic, "First bacteraemic human infection with Escherichia albertii," New Microbes New Infect, vol. 8, pp. 171-173, 2015, doi: 10.1016/j.nmni.2015.07.003.
[46] Q. Liu et al., "Escherichia albertii isolated from the bloodstream of a patient with liver cirrhosis in China: A case report," Heliyon, vol. 9, no. 11, p. e22298, 2023, doi: 10.1016/j.heliyon.2023.e22298.
[47] M. O. Gaytán, V. I. Martínez-Santos, E. Soto, and B. González-Pedrajo, "Type three secretion system in attaching and effacing pathogens," Front Cell Infect Microbiol, Review vol. 6, 2016, doi: 10.3389/fcimb.2016.00129.
[48] L. Luo et al., "Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance," Microb Genom, vol. 7, no. 12, 2021, doi: 10.1099/mgen.0.000710.
[49] K. G. Jarvis, J. A. Giron, A. E. Jerse, T. K. McDaniel, M. S. Donnenberg, and J. B. Kaper, "Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation," Proceedings of the National Academy of Sciences, vol. 92, no. 17, pp. 7996-8000, 1995.
[50] X. Yang et al., "Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China," Scientific Reports, vol. 10, no. 1, p. 3275, 2020, doi: 10.1038/s41598-020-60225-w.
[51] D. W. Lacher, H. Steinsland, and T. S. Whittam, "Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP," FEMS Microbiol Lett, vol. 261, no. 1, pp. 80-7, 2006, doi: 10.1111/j.1574-6968.2006.00328.x.
[52] B. McWilliams and A. Torres, "EHEC adhesins. Microbiol Spectr 2: EHEC00032013," ed, 2014.
[53] D. Bibbal et al., "Intimin gene (eae) subtype-based real-time PCR strategy for specific detection of Shiga toxin-producing Escherichia coli serotypes O157: H7, O26: H11, O103: H2, O111: H8, and O145: H28 in cattle feces," App Environ Microbiol, vol. 80, no. 3, pp. 1177-1184, 2014.
[54] S. Bhatt, M. Egan, B. Critelli, A. Kouse, D. Kalman, and C. Upreti, "The ivasive enemy: insights into the virulence and epidemiology of the emerging attaching and effacing pathogen Escherichia albertii," Infect Immun, vol. 87, no. 1, 2019, doi: 10.1128/iai.00254-18.
[55] Y. Ogura et al., "Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 42, pp. 17939-17944, 2009, doi: 10.1073/pnas.0903585106.
[56] M. Cepeda-Molero et al., "Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors," PLoS Pathog, vol. 13, no. 10, p. e1006706, 2017, doi: 10.1371/journal.ppat.1006706.
[57] D. Yamamoto et al., "Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites," PLoS One, vol. 12, no. 2, p. e0171385, 2017, doi: 10.1371/journal.pone.0171385.
[58] R. T. Hernandes et al., "The localized adherence pattern of an atypical enteropathogenic Escherichia coli is mediated by intimin omicron and unexpectedly promotes HeLa cell invasion," Cell Microbiol, vol. 10, no. 2, pp. 415-425, 2008.
[59] D. Vingadassalom et al., "Insulin receptor tyrosine kinase substrate links the E. coli O157: H7 actin assembly effectors Tir and EspFU during pedestal formation," Proc Natl Acad Sci U S A vol. 106, no. 16, pp. 6754-6759, 2009.
[60] K. G. Campellone, D. Robbins, and J. M. Leong, "EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly," Developmental cell, vol. 7, no. 2, pp. 217-228, 2004.
[61] E. Nieto-Pelegrin, B. Kenny, and N. Martinez-Quiles, "Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector," Cell Adhesion & Migration, vol. 8, no. 4, pp. 404-417, 2014, doi: 10.4161/19336918.2014.969993.
[62] F. T. Romão et al., "Genomic properties and temporal Analysis of the interaction of an invasive Escherichia albertii with epithelial cells," Front Cell Infect Microbiol, vol. 10, p. 571088, 2020, doi: 10.3389/fcimb.2020.571088.
[63] A. Melton-Celsa, "Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr 2: EHEC," ed: EHEC‑0024–2013, 2014, 10. 1128/micro biols pec. EHEC‑0024‑2013.
[64] C. L. Gyles, "Shiga toxin-producing Escherichia coli: an overview," J Anim Sci, vol. 85, no. 13 Suppl, pp. E45-62, 2007, doi: 10.2527/jas.2006-508.
[65] X. Wang et al., "A comprehensive review on Shiga toxin subtypes and their Niche-related distribution characteristics in Shiga-toxin-producing E. coli and other bacterial hosts," Microorganisms, vol. 12, no. 4, p. 687, 2024.
[66] H. Schmidt, J. Scheef, S. Morabito, A. Caprioli, L. H. Wieler, and H. Karch, "A new Shiga toxin 2 variant (stx2f) from Escherichia coli isolated from pigeons," Applied and environmental microbiology, vol. 66, no. 3, pp. 1205-1208, 2000, doi: 10.1128/AEM.66.3.1205-1208.2000.
[67] S. Farooq, I. Hussain, M. Mir, M. Bhat, and S. Wani, "Isolation of atypical enteropathogenic Escherichia coli and Shiga toxin 1 and 2f‐producing Escherichia coli from avian species in India," Lett Appl Microbiol, vol. 48, no. 6, pp. 692-697, 2009.
[68] K. Grossmann, B. Weniger, G. Baljer, B. Brenig, and L. H. Wieler, "Racing, ornamental and city pigeons carry shiga toxin producing Escherichia coli (STEC) with different Shiga toxin subtypes, urging further analysis of their epidemiological role in the spread of STEC," Berliner Und Munchener Tierarztliche Wochenschrift, vol. 118, no. 11-12, pp. 456-463, 2005.
[69] K. Murakami et al., "Isolation and characteristics of Shiga toxin 2f-producing Escherichia coli among pigeons in Kyushu, Japan," PLoS One, vol. 9, no. 1, p. e86076, 2014.
[70] A. Hinenoya et al., "Isolation and characterization of an Escherichia albertii strain producing three different toxins from a child with diarrhea," Jpn J Infect Dis, vol. 70, no. 3, pp. 252-257, 2017, doi: 10.7883/yoken.JJID.2016.186.
[71] K. Leszczyńska et al., "Escherichia albertii as a Potential enteropathogen in the light of epidemiological and genomic studies," Genes (Basel), vol. 14, no. 7, Jun 30 2023, doi: 10.3390/genes14071384.
[72] K. Murakami et al., "Shiga toxin 2f-producing Escherichia albertii from a symptomatic human," Japanese journal of infectious diseases, vol. 67, no. 3, pp. 204-208, 2014.
[73] S. Iyoda, N. Ishijima, K. Lee, T. Ishihara, and M. Ohnishi, "Stx2f-positive Escherichia albertii isolated from a patient with hemolytic uremic syndrome, August 2016," Infect. Agents Surveill. Rep, vol. 37, p. 255, 2016.
[74] L. T. Brandal, H. S. Tunsjø, T. E. Ranheim, I. Løbersli, H. Lange, and A. L. Wester, "Shiga toxin 2a in Escherichia albertii," J Clin Microbiol, vol. 53, no. 4, pp. 1454-1455, 2015.
[75] B. Travert et al., "Shiga toxin-associated hemolytic uremic syndrome: specificities of adult patients and implications for critical care management," Toxins (Basel), vol. 13, no. 5, 2021, doi: 10.3390/toxins13050306.
[76] I. Friesema et al., "Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E. coli (STEC) infections in the Netherlands, January 2008 to December 2011," Eurosurveillance, vol. 19, no. 17, p. 20787, 2014.
[77] I. H. Friesema et al., "Hemolytic uremic syndrome associated with Escherichia coli O8: H19 and Shiga toxin 2f gene," Emerg Infect Dis, vol. 21, no. 1, p. 168, 2015.
[78] C. Skinner, S. McMahon, R. Rasooly, J. M. Carter, and X. He, "Purification and characterization of Shiga toxin 2f, an immunologically unrelated subtype of Shiga toxin 2," PLoS One, vol. 8, no. 3, p. e59760, 2013, doi: 10.1371/journal.pone.0059760.
[79] E. L. Ori et al., "Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance," Epidemiol Infect, vol. 147, p. e10, 2018, doi: 10.1017/s0950268818002595.
[80] A. Hinenoya et al., "Development of a specific cytolethal distending toxin (cdt) gene (Eacdt)–based PCR assay for the detection of Escherichia albertii," Diagnostic Microbiology and Infectious Disease, vol. 95, no. 2, pp. 119-124, 2019, doi: 10.1016/j.diagmicrobio.2019.04.018.
[81] A. Hinenoya et al., "Association of cytolethal distending toxin-II gene-positive Escherichia coli with Escherichia albertii, an emerging enteropathogen," Int J Med Microbiol, vol. 307, no. 8, pp. 564-571, 2017, doi: 10.1016/j.ijmm.2017.08.008.
[82] W. Johnson and H. Lior, "Production of Shiga toxin and a cytolethal distending toxin (CLDT) by serogroups of Shigella spp," FEMS microbiology letters, vol. 48, no. 1-2, pp. 235-238, 1987.
[83] C. C. Chien, N. S. Taylor, Z. Ge, D. B. Schauer, V. B. Young, and J. G. Fox, "Identification of cdtB homologues and cytolethal distending toxin activity in enterohepatic Helicobacter spp," J Med Microbiol, vol. 49, no. 6, pp. 525-534, 2000, doi: 10.1099/0022-1317-49-6-525.
[84] J. Song, X. Gao, and J. E. Galán, "Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin," Nature, vol. 499, no. 7458, pp. 350-354, 2013, doi: 10.1038/nature12377.
[85] M. D. Scuron, K. Boesze-Battaglia, M. Dlakić, and B. J. Shenker, "The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a tri-perditious toxin," Front Cell Infect Microbiol, vol. 6, p. 168, 2016, doi: 10.3389/fcimb.2016.00168.
[86] L. Guerra, X. Cortes-Bratti, R. Guidi, and T. Frisan, "The biology of the cytolethal distending toxins," Toxins (Basel), vol. 3, no. 3, pp. 172-90, 2011, doi: 10.3390/toxins3030172.
[87] D. A. Scott and J. B. Kaper, "Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin," Infection and immunity, vol. 62, no. 1, pp. 244-251, 1994.
[88] M. Lara-Tejero and J. E. Galán, "A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein," Science, vol. 290, no. 5490, pp. 354-357, 2000.
[89] D. Nešić, Y. Hsu, and C. E. Stebbins, "Assembly and function of a bacterial genotoxin," Nature, vol. 429, no. 6990, pp. 429-433, 2004.
[90] E. Bezine, J. Vignard, and G. Mirey, "The cytolethal distending toxin effects on Mammalian cells: a DNA damage perspective," Cells, vol. 3, no. 2, pp. 592-615, 2014.
[91] I. Tóth et al., "Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli," Infection and immunity, vol. 77, no. 1, pp. 492-500, 2009.
[92] T. A. T. Gomes, T. Ooka, R. T. Hernandes, D. Yamamoto, T. Hayashi, and M. S. Donnenberg, "Escherichia albertii pathogenesis," EcoSal Plus, vol. 9, no. 1, 2020, doi: 10.1128/ecosalplus.ESP-0015-2019.
[93] H. An, J. M. Fairbrother, C. Desautels, and J. Harel, "Distribution of a novel locus called Paa (porcine attaching and effacing associated) among enteric Escherichia coli," Adv Exp Med Biol, vol. 473, pp. 179-184, 1999, doi: 10.1007/978-1-4615-4143-1_17.
[94] S. Leclerc et al., "paa, originally identified in attaching and effacing Escherichia coli, is also associated with enterotoxigenic E. coli," Research in microbiology, vol. 158, no. 1, pp. 97-104, 2007, doi: 10.1016/j.resmic.2006.09.004.
[95] I. Batisson et al., "Characterization of the novel Factor Paa involved in the early steps of the adhesion mechanism of Attaching and Effacing Escherichia coli," Infect Immun, vol. 71, no. 8, pp. 4516-4525, 2003, doi: 10.1128/iai.71.8.4516-4525.2003.
[96] C. Khursigara, M. Abul-Milh, B. Lau, J. A. Girón, C. A. Lingwood, and D. E. Barnett Foster, "Enteropathogenic Escherichia coli virulence factor bundle-forming pilus has a binding specificity for phosphatidylethanolamine," Infect Immun, vol. 69, no. 11, pp. 6573-6579, 2001, doi: 10.1128/iai.69.11.6573-6579.2001.
[97] J. M. Klapproth et al., "A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation," Infect Immun, vol. 68, no. 4, pp. 2148-2155, 2000, doi: 10.1128/iai.68.4.2148-2155.2000.
[98] L. Nicholls, T. H. Grant, and R. M. Robins-Browne, "Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells," Molecular microbiology, vol. 35, no. 2, pp. 275-288, 2000, doi: 10.1046/j.1365-2958.2000.01690.x.
[99] C. P. Ren et al., "The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition," Journal of bacteriology, vol. 186, no. 11, pp. 3547-3560, 2004, doi: 10.1128/jb.186.11.3547-3560.2004.
[100] J. W. Costerton, P. S. Stewart, and E. P. Greenberg, "Bacterial biofilms: a common cause of persistent infections," Science, vol. 284, no. 5418, pp. 1318-1322, 1999, doi: 10.1126/science.284.5418.1318.
[101] H.-C. Flemming and J. Wingender, "The biofilm matrix," Nat Rev Microbiol, vol. 8, no. 9, pp. 623-633, 2010, doi: 10.1038/nrmicro2415.
[102] V. Ballén, V. Cepas, C. Ratia, Y. Gabasa, and S. M. Soto, "Clinical Escherichia coli: From Biofilm Formation to New Antibiofilm Strategies," Microorganisms, vol. 10, no. 6, 2022, doi: 10.3390/microorganisms10061103.
[103] N. A. Hassuna, E. M. Rabea, W. K. M. Mahdi, and W. M. Abdelraheem, "Biofilm formation and antimicrobial resistance pattern of uropathogenic E. coli ST131 isolated from children with malignant tumors," J Antibiot, vol. 77, no. 5, pp. 324-330, 2024, doi: 10.1038/s41429-024-00704-8.
[104] R. T. Hernandes, M. A. De la Cruz, D. Yamamoto, J. A. Girón, and T. A. Gomes, "Dissection of the role of pili and type 2 and 3 secretion systems in adherence and biofilm formation of an atypical enteropathogenic Escherichia coli strain," Infect Immun, vol. 81, no. 10, pp. 3793-802, 2013, doi: 10.1128/iai.00620-13.
[105] C. Beloin, A. Roux, and J. M. Ghigo, "Escherichia coli biofilms," Curr Top Microbiol Immunol, vol. 322, pp. 249-89, 2008, doi: 10.1007/978-3-540-75418-3_12.
[106] V. Ballén, V. Cepas, C. Ratia, Y. Gabasa, and S. M. Soto, "Clinical Escherichia coli: from biofilm formation to new antibiofilm strategies," Microorganisms, vol. 10, no. 6, p. 1103, 2022.DOI: https://doi.org/10.34238/tnu-jst.10416
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu