NGHIÊN CỨU THIẾT KẾ VÀ BIỂU HIỆN GENE MÃ HÓA ENZYME PETASE TRONG E. coli
Thông tin bài báo
Ngày nhận bài: 01/06/24 Ngày hoàn thiện: 11/07/24 Ngày đăng: 17/07/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] O. Bajt, “From plastics to microplastics and organisms,” FEBS Open Bio, vol. 11, no. 4, pp. 954-966, 2021.
[2] J. Ru, Y. Huo, and Y. Yang, “Microbial Degradation and Valorization of Plastic Wastes,” Frontiers in Microbiology, vol. 11, 2020, Art. no. 442.
[3] T. R. Walker and L. Fequet, “Current trends of unsustainable plastic production and micro(nano)plastic pollution,” Trends in Analytical Chemistry, vol. 160, 2023, Art. no. 116984.
[4] T. M. Letcher, “Introduction to plastic waste and recycling,” in Plastic Waste and Recycling - Environmental Impact, Societal Issues, Prevention, and Solutions, Academic Press, 1st ed, 2020, pp. 3-12.
[5] C. J. Rhodes, “Plastic pollution and potential solutions,” Sci. Prog., vol. 101, no. 3, pp. 207-260, 2018.
[6] Ministry of Natural Resources and Environment, “Report on the current state of the national environment,” (in Vietnamese), 2019.
[7] R. Wei and W. Zimmermann, “Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we?” Microbial Biotechnology, vol. 10, no. 6, pp. 1308-1322, 2017.
[8] M. N. Issac and B. Kandasubramanian, “Effect of microplastics in water and aquatic systems,” Environmental Science and Pollution Research, vol. 28, no. 16, pp. 19544-19562, 2021.
[9] N. F. S. Khairul Anuar et al., “An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation,” International Journal of Molecular Sciences, vol. 23, no. 20, 2022, Art. no. 12644.
[10] S. Yoshida et al., “A bacterium that degrades and assimilates poly(ethylene terephthalate),” Science, vol. 351, no. 6278, pp. 1196-1199, 2016.
[11] A. K. Urbanek, K. E. Kosiorowska, and A. M. Mirończuk, “Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms,” Frontiers in Bioengineering and Biotechnology, vol. 9, 2021, Art. no. 771133.
[12] X. Qi, W. Yan, Z. Cao, M. Ding, and Y. Yuan, “Current advances in the biodegradation and bioconversion of polyethylene terephthalate,” Microorganisms, vol. 10, 2022, Art. no. 39.
[13] H. Seo, S. Kim, H. F. S. H.-Y. Sagong, S. Joo, and K.-J. Kim, “Production of extracellular PETase from Ideonella sakaiensis using secdependent signal peptides in E. coli,” Biochem. Biophys. Res. Commun., vol. 508, no. 1, pp. 250-255, 2019.
[14] T. L. A. Pham and T. B. T. Le, “Cloning, expression, and PET plastic degradation assessment of recombinant PETase in E. coli,” in National Conference on Biotechnology, 2023, pp. 204-209.
[15] T. N. M. Pham, D. H. Tran, H. T. Tran, and H. T. T. Phung, “Expression, purification and preliminary evaluation of PET degradation activity of PETase,” J. Sci. Technol., vol. 6, no. 2, pp. 24-35, 2023.
[16] A. Froger and J. E. Hall, “Transformation of Plasmid DNA into E. coli using the heat shock method,” J. Vis. Exp., vol. 6, no. 253, 2007, PMID: 18997900.
[17] U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, pp. 680-685, 1970.
[18] R. A. Daniel, E. J. Harry, and J. Errington, “Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis,” Mol. Microbiol., vol. 35, no. 2, pp.299-311, 2000.
[19] B. Zhu, Q. Ye, Y. Seo, and N. Wei, “Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase,” Environ. Sci. Technol. Lett., vol. 9, no. 7, pp. 650-657, 2022.
[20] N. Puspitasari, S. L. Tsai, and C. K. Lee, “Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate,” Appl. Biochem. Biotechnol., vol. 193, pp. 1284-1295, 2021.
[21] S. Joo et al., “Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation,” Nat. Commun., vol. 9, 2018, Art. no. 382.
[22] X. Han et al., “Structural insight into catalytic mechanism of PET hydrolase,” Nat. Commun., vol. 8, 2017, Art. no. 2106.
[23] A. Karyolaimos et al., “Enhancing Recombinant Protein Yields in the E. coli Periplasm by Combining Signal Peptide and Production Rate Screening,” Front. Microbiol., vol. 10, 2019, Art. no. 1511.
[24] Q. T. Nguyen, T. H. Duong, N. G. Le, T. T. H. Le, T. H. Do, and N. H. Truong, “Designing recombinant Escherichia coli strain for expression of Interleukin-3 and Interleukin-11 in fusion form with PelB,” Academia Journal of Biology, vol. 35, no. 3se, pp. 94-99, 2013.
[25] L. Shi, H. Liu, S. Gao, Y. Weng, and L. Zhu, “Enhanced extracellular production of IsPETase in Escherichia coli via engineering of the pelB signal peptide,” J. Agric. Food Chem., vol. 69, no. 7, pp. 2245-2252, 2021.
[26] L. Cui et al., “Excretory expression of IsPETase in E. coli by an enhancer of signal peptides and enhanced PET hydrolysis,” Int. J. Biol. Macromol., vol. 188, pp. 568-575, 2021.
[27] B. Deng et al., “Improving the activity and thermostability of PETase from Ideonella sakaiensis through modulating its post-translational glycan modification,” Commun. Biol., vol. 6, 2023, Art. no. 39.DOI: https://doi.org/10.34238/tnu-jst.10509
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu