KHẢO SÁT KHẢ NĂNG NHẢ DƯỢC CHẤT CURCUMIN CỦA MÀNG CaTiO3 PHỦ LÊN Ti ĐỊNH HƯỚNG ỨNG DỤNG TRONG Y SINH
Thông tin bài báo
Ngày nhận bài: 11/10/24                Ngày hoàn thiện: 13/11/24                Ngày đăng: 13/11/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] X. Li et al., “Near-infrared luminescent CaTiO3:Nd3+ nanofibers with tunable and trackable drug release kinetics,” J. Mater. Chem. B, vol. 3, no. 37, pp. 7449-7456, 2015, doi: 10.1039/c5tb01158b.
[2] N. Nasongkla et al., “cRGD-functionalized polymer micelles for targeted doxorubicin delivery,” Angew. Chemie - Int. Ed., vol. 43, no. 46, pp. 6323-6327, 2004, doi: 10.1002/anie.200460800.
[3] W. Xia and J. Chang, “Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system,” J. Control. Release, vol. 110, no. 3, pp. 522-530, 2006, doi: 10.1016/j.jconrel.2005.11.002.
[4] Z. Chen et al., “Mesoporous silica nanoparticles with manipulated microstructures for drug delivery,” Colloids Surfaces B Biointerfaces, vol. 95, pp. 274-278, 2012, doi: 10.1016/j.colsurfb.2012.03.012.
[5] Z. Hou et al., “Multifunctional Hydroxyapatite Nanofibers and Microbelts as Drug Carriers,” Chem. - A Eur. J., vol. 15, no. 28, pp. 6973–6982, 2009, doi: 10.1002/chem.200900269.
[6] D. Pastorino, C. Canal, and M. P. Ginebra, “Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity-drug interaction,” Acta Biomater., vol. 12, no. 1, pp. 250-259, 2015, doi: 10.1016/j.actbio.2014.10.031.
[7] X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalt. Trans., vol. 40, no. 9, pp. 1873-1879, 2011, doi: 10.1039/c0dt01390k.
[8] C. Karthikeyan, M. Thamima, and S. Karuppuchamy, “Structural and photocatalytic property of CaTiO3 nanosphere,” Mater. Sci. Forum, vol. 979 MSF, pp. 169-174, 2020, doi: 10.4028/www.scientific.net/ MSF.979.169.
[9] C. L. Huang, C. L. Pan, and S. J. Shium, “Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics,” Mater. Chem. Phys., vol. 78, no. 1, pp. 111-115, 2003, doi: 10.1016/S0254-0584(02)00311-5.
[10] T. Soltani et al., “Effect of transition metal oxide cocatalyst on the photocatalytic activity of Ag loaded CaTiO3 for CO2 reduction with water and water splitting,” Appl. Catal. B Environ., vol. 286, no. January, p. 119899, 2021, doi: 10.1016/j.apcatb.2021.119899.
[11] H. Chouirfa, H. Bouloussa, V. Migonney, and C. Falentin-Daudré, “Review of titanium surface modification techniques and coatings for antibacterial applications,” Acta Biomater., vol. 83, pp. 37–54, 2019, doi: 10.1016/j.actbio.2018.10.036.
[12] S. Sahoo, A. Sinha, V. K. Balla, and M. Das, “Synthesis, characterization, and bioactivity of SrTiO3-incorporated titanium coating,” J. Mater. Res., vol. 33, no. 14, pp. 2087–2095, 2018, doi: 10.1557/jmr.2018.99.
[13] Y. Wang, D. Zhang, C. Wen, and Y. Li, “Processing and Characterization of SrTiO3-TiO2 Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications,” ACS Appl. Mater. Interfaces, vol. 7, no. 29, pp. 16018-16026, 2015, doi: 10.1021/acsami.5b04304.
[14] S. K. AbdulKareem, S. A. Ajeel, and M. L. Shaghnab, “Influence of Substrate Temperature on Surface Properties and Biocompatibility of RF Sputtered CaTiO3 Thin Films,” AIP Conf. Proc., vol. 2845, no. 1, 2023, doi: 10.1063/5.0159168.
[15] S. Sri-o-Sot et al., “CaTiO3-hydroxyapatite bioceramic composite: Synthesis of reactant powders from waste cockle shell, sintering, characterization and investigation of physical, mechanical and in-vitro biological properties,” J. Aust. Ceram. Soc., vol. 60, no. 1, pp. 65–87, 2024, doi: 10.1007/s41779-023-00987-4.
[16] A. Escobar et al., “Strontium Titanate (SrTiO3) Mesoporous Coatings for Enhanced Strontium Delivery and Osseointegration on Bone Implants,” Adv. Eng. Mater., vol. 21, no. 7, pp. 1-8, 2019, doi: 10.1002/adem.201801210.
[17] A. K. Dubey, B. Basu, K. Balani, R. Guo, and A. S. Bhalla, “Multifunctionality of perovskites BaTiO3 and CaTiO3 in a composite with hydroxyapatite as orthopedic implant materials,” Integr. Ferroelectr., vol. 131, no. 1, pp. 119-126, 2011, doi: 10.1080/10584587.2011.616425.
[18] N. T. T. Tuyen et al., “Synthesis of Up-Conversion CaTiO3: Er3+ Films on Titanium by Anodization and Hydrothermal Method for Biomedical Applications,” Materials, vol. 17, p. 3376, 2024, doi: 10.3390/ma17133376.
[19] D. H. Quan et al., “Synthesis of TiO2 Nanotubes for Improving the Corrosion Resistance Performance of the Titanium Implants,” VNU J. Sci. Math. - Phys., vol. 38, no. 4, pp. 61-68, 2022, doi: 10.25073/2588-1124/vnumap.4732.
DOI: https://doi.org/10.34238/tnu-jst.11293
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





