ẢNH HƯỞNG CỦA NỒNG ĐỘ ION Eu3+ ĐẾN CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA BỘT HUỲNH QUANG LSTO ĐƯỢC CHẾ TẠO BẰNG PHƯƠNG PHÁP PHẢN ỨNG PHA RẮN
Thông tin bài báo
Ngày nhận bài: 24/10/24                Ngày hoàn thiện: 26/11/24                Ngày đăng: 26/11/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] M. T. Tran et al., “Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4:Eu3+ phosphors for WLED application,” J. Alloys Compd., vol. 853, 2021, Art. no. 156941, doi: 10.1016/j.jallcom.2020.156941.
[2] V.Q. Nguyen et al., “A high quantum efficiency plant growth LED by using a deep-red-emitting α-Al2O3:Cr3+ phosphor,” Dalt. Trans., vol. 50, no. 36, pp. 12570-12582, 2021, doi: 10.1039/d1dt00115a.
[3] Y. Zhang, L. Luo, G. Chen, Y. Liu, R. Liu, and X. Chen, “Green and red phosphor for LED backlight in wide color gamut LCD,” J. Rare Earths, vol. 38, no. 1, pp. 1-12, 2020, doi: 10.1016/j.jre.2019.10.005.
[4] K. Li and C. Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors,” Optik (Stuttg)., vol. 123, no. 7, pp. 621-623, 2012, doi: 10.1016/j.ijleo.2011.06.005.
[5] K. Li and C. Shen, “White light LED based on YAG:Ce3+ and YAG:Ce3+ ,Gd3+ phosphor,” 5th Int. Symp. Adv. Opt. Manuf. Test. Technol. Optoelectron. Mater. Devices Detect. Imager, Display, Energy Convers. Technol., 2010, doi: 10.1117/12.865938.
[6] Y. Liu, M. Zhang, Y. Nie, J. Zhang, and J. Wang, “Growth of YAG:Ce3+ Al2O3 eutectic ceramic by HDS method and its application for white LEDs,” J. Eur. Ceram. Soc., vol. 37, no. 15, pp. 4931-4937, 2017, doi: 10.1016/j.jeurceramsoc.2017.06.014.
[7] A. Potdevin, G. Chadeyron, D. Boyer, and R. Mahiou, “Sol-gel based YAG:Ce3+ powders for applications in LED devices,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 4, no. 1, pp. 65-69, 2007, doi: 10.1002/pssc.200673550.
[8] Y. Zhang, L. Li, X. Zhang, And Q. Xi, “Temperature effects on photoluminescence of YAG:Ce3+ phosphor and performance in white light-emitting diodes,” J. Rare Earths, vol. 26, no. 3, pp. 446-449, 2008, doi: 10.1016/S1002-0721(08)60115-5.
[9] Y. Takeda, H. Kato, M. Kobayashi, H. Kobayashi, and M. Kakihana, “Photoluminescence properties of Mn4+-activated perovskite-type titanates, La2MTiO6:Mn4+ (M = Mg and Zn),” Chemistry Letters, vol. 44, no. 11, 2015, doi: 10.1246/cl.150748.
[10] C. J. Howard, P. W. Barnes, B. J. Kennedy, and P. M. Woodward, “Structures of the ordered double perovskites Sr2YTaO6 and Sr2YNbO6,” Acta Crystallogr. Sect. B Struct. Sci., vol. 61, no. 3, pp. 258-262, Jun. 2005, doi: 10.1107/S0108768105012395.
[11] L. Xi, Y. Pan, X. Chen, S. Huang, and M. Wu, “Optimized photoluminescence of red phosphor Na2SnF6:Mn4+ as red phosphor in the application in ‘warm’ white LEDs,” J. Am. Ceram. Soc., vol. 100, no. 5, 2017, doi: 10.1111/jace.14708.
[12] Q. Sun et al., “Double perovskite Ca2LuTaO6:Eu3+ red-emitting phosphors: Synthesis, structure and photoluminescence characteristics,” J. Alloys Compd., vol. 804, pp. 230-236, Oct. 2019, doi: 10.1016/j.jallcom.2019.06.260.
[13] A. Fu et al., “A novel double perovskite La2ZnTiO6:Eu3+ red phosphor for solid-state lighting: Synthesis and optimum luminescence,” Opt. Laser Technol., vol. 96, pp. 43-49, 2017, doi: 10.1016/j.optlastec.2017.04.025.
[14] B. Bondzior, D. Stefańska, T. H. Q. VU, N. Miniajluk-Gaweł, and P. J. Dereń, “Red luminescence with controlled rise time in La2MgTiO6:Eu3+,” J. Alloys Compd., vol. 852, 2021, doi: 10.1016/j.jallcom.2020.157074.
[15] B. Su, H. Xie, Y. Tan, Y. Zhao, Q. Yang, and S. Zhang, “Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6:Sm3+, Eu3+,” J. Lumin., vol. 204, pp. 457-463, 2018, doi: 10.1016/j.jlumin.2018.08.013.
[16] H. Yuan, Z. Huang, L. Xu, H. Jia, X. Sun, and K. Liu, “La2MgTiO6:Bi3+/Mn4+ photoluminescence materials: Molten salt preparation, Bi3+→Mn4+ energy transfer and thermostability,” J. Lumin., vol. 224, April 2020, Art. no. 117290, doi: 10.1016/j.jlumin.2020.117290.
[17] Z. Yang et al., “Studies on luminescence properties of double perovskite deep red phosphor La2ZnTiO6:Mn4+ for indoor plant growth LED applications,” J. Alloys Compd., vol. 802, pp. 628–635, Sep. 2019, doi: 10.1016/j.jallcom.2019.06.199.
[18] Y. W. Seo, D. Kim, W. Ran, S. H. Park, B. C. Choi, and J. H. Jeong, “Luminescence properties and energy transfer of Mn4+-doped double perovskite La2ZnTiO6 phosphor,” Opt. Mater. (Amst)., vol. 106, May 2020, Art. no. 109980, doi: 10.1016/j.optmat.2020.109980.
[19] M. Hu, C. Liao, L. Xia, W. You, and Z. Li, “Low temperature synthesis and photoluminescence properties of Mn4+ -doped La2MgTiO6 deep-red phosphor with a LiCl flux,” J. Lumin., vol. 211, pp. 114-120, March 2019, doi: 10.1016/j.jlumin.2019.03.034.
[20] J. Ou, X. Yang, and S. Xiao, “Luminescence performance of Cr3+ doped and Cr3+, Mn4+ co-doped La2ZnTiO6 phosphors,” Mater. Res. Bull., vol. 124, 2020, Art. no. 110764, doi: 10.1016/j.materresbull.2019.110764.
[21] K. Li, H. Lian, R. Van Deun, and M. G. Brik, “A far-red-emitting NaMgLaTeO6:Mn4+ phosphor with perovskite structure for indoor plant growth,” Dye. Pigment., vol. 162, pp. 214-221, Mar. 2019, doi: 10.1016/j.dyepig.2018.09.084.
[22] C. Wei, D. Xu, J. Li, A. Geng, X. Li, and J. Sun, “Synthesis and luminescence properties of Eu3+ doped a novel double perovskite Sr2YTaO6 phosphor,” J. Mater. Sci. Mater. Electron., vol. 30, no. 3, pp. 2864-2871, Feb. 2019, doi: 10.1007/s10854-018-0563-2.
[23] J. Huang et al., “La2MgTiO6:Eu2+/TiO2-based composite for methyl orange (MO) decomposition,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 12, 2019, doi: 10.1007/s00339-019-3147-y.
[24] K. Singh, M. I. U. Haq, and S. Mohan, “Synergism of h-BN and La2O3 in improving the tribological performance of Al2O3 coatings,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2024, doi: 10.1177/13506501241272777.
[25] W. Ismail, A. Belal, W. Abdo, and A. El-Shaer, “Investigating the physical and electrical properties of La2O3 via annealing of La(OH)3,” Sci. Rep., vol. 14, no. 1, pp. 1-12, 2024, doi: 10.1038/s41598-024-57848-8.
[26] S. Bakshi, S. Rani, and P. Kaur, “Down conversions luminescent properties of Eu doped SrTiO3,” J. Phys. Conf. Ser., vol. 2267, no. 1, 2022, doi: 10.1088/1742-6596/2267/1/012042.
[27] M. Qin et al., “Response to comment on ‘point defect structure of La-doped SrTiO3 ceramics with colossal permittivity,’” Scr. Mater., vol. 190, pp. 118-120, 2021, doi: 10.1016/j.scriptamat. 2020.08.037.
[28] A. Rocca, A. Licciulli, M. Politi, and D. Diso, “ Rare Earth-Doped SrTiO3 Perovskite Formation from Xerogels,” ISRN Ceram., vol. 2012, pp. 1-6, 2012, doi: 10.5402/2012/926537.
[29] X. Yin, J. Yao, Y. Wang, C. Zhao, and F. Huang, “Novel red phosphor of double perovskite compound La2MgTiO6:xEu3+,” J. Lumin., vol. 132, no. 7, pp. 1701-1704, 2012, doi: 10.1016/j.jlumin.2012.02.006.
DOI: https://doi.org/10.34238/tnu-jst.11395
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu