ĐÁNH GIÁ TÌNH TRẠNG CẤU TRÚC CẦU ĐƯỜNG BỘ DỰA TRÊN THUẬT TOÁN HỌC KHÔNG GIÁM SÁT
Thông tin bài báo
Ngày nhận bài: 16/12/24                Ngày hoàn thiện: 22/01/25                Ngày đăng: 22/01/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] A. Aeran, S. Vantadori, A. Carpinteri, S. Siriwardane, and D. Scorza, "Novel non-linear relationship to evaluate the critical plane orientation," Int. J. Fatigue, vol. 124, pp. 537-543, 2019, doi: 10.1016/j.ijfatigue.2019.02.012.
[2] T. Q. Nguyen, T. T. D. Nguyen, X. H. Nguyen, and N. K. Ngo, "A correlation coefficient approach for evaluation of stiffness degradation of beams under moving load," Computers, Materials and Continua, vol. 61, pp. 27-53, 2019, doi: 10.32604/cmc.2019.07756.
[3] M. Kim and J. Song, "Near-Real-Time Identification of Seismic Damage Using Unsupervised Deep Neural Network," J. Eng. Mech., vol. 148, 2022, Art. no. 04022006, doi: 10.1061/(asce)em.1943-7889.0002066.
[4] O. Bouzas, B. Conde, J. C. Matos, M. Solla, and M. Cabaleiro, "Reliability-based structural assessment of historical masonry arch bridges: The case study of Cernadela bridge," Case Stud. Constr. Mater., vol. 18, 2023, Art. no. e02003, doi: 10.1016/j.cscm.2023.e02003.
[5] Z. Xiang, Z. Zhu, and X. Lei, "Fatigue assessment and crack propagation of floorbeam cutout in orthotropic bridge decks," Mater. Des., vol. 226, 2023, Art. no. 111676, doi: 10.1016/j.matdes.2023.111676.
[6] D. P. McCrum, S. Wang, and E. J. OBrien, “Monitoring the health of bridges using accelerations from a fleet of vehicles without knowing individual axle weights,” J. Struct. Integrity Maint., vol. 8, no. 4, pp. 249-259, 2023, doi: 10.1080/24705314.2023.2193779.
[7] A. Santos, R. Santos, M. Silva, E. Figueiredo, C. Sales, and J. C. W. A. Costa, "A Global Expectation–Maximization Approach Based on Memetic Algorithm for Vibration-Based Structural Damage Detection," IEEE Trans. Instrum. Meas., vol. 66, no. 4, pp. 661-670, 2017, doi: 10.1109/TIM.2017.2663478.
[8] Y. Li, N. Zhang, Q. Sun, C. Cai, and K. Li, “Neural Network-Based Anomaly Data Classification and Localization in Bridge Structural Health Monitoring,” Int. J. Struct. Stab. Dyn., vol. 24, no. 16, 2024, Art. no. 2450184, doi: 10.1142/S0219455424501840.
[9] S. Muin, C. Chern, and K. M. Mosalam, “Human–Machine Collaboration Framework for Bridge Health Monitoring,” J. Bridge Eng., vol. 29, no. 7, 2024, Art. no. 4024041, doi: 10.1061/JBENF2.BEENG-6587.
[10] A. Diez, N. L. D. Khoa, M. M. Alamdari, Y. Wang, F. Chen, and P. Runcie, “A clustering approach for structural health monitoring on bridges," J. Civ. Struct. Health Monit., vol. 6, pp. 429-445, 2016, doi: 10.1007/s13349-016-0160-0.
[11] J. Xiong, L. Shu, Q. Wang, W. Xu, and C. Zhu, “A Scheme on Indoor Tracking of Ship Dynamic Positioning Based on Distributed Multi-Sensor Data Fusion," IEEE Access, vol. 5, pp. 379-392, 2017, doi: 10.1109/ACCESS.2016.2607232.
[12] N. A. Cao, V. V. Vu, and T. T. H. Phung, “K-Means* Clustering Algorithm,” TNU Journal of Science and Technology, vol. 169, no. 9, pp. 159-164, 2017.
[13] Vietnam Ministry of Science and Technology, “TCVN 7378: 2004: Vibration and shock - Vibration of buildings - Limits of vibration levels and method for evaluation,” October 29, 2004.
[14] X. K. Dang, J. M. Corchado, V. V. Le, and V. D. Do, “Non-parametric Vibration-based Structural Damage Detection for Coastal Structures: Multi-Dimension to Single Input Convolutional Neural Network Approach,” Advances in Electrical and Computer Engineering, vol. 24, no. 4, pp. 3-18, 2024, doi: 10.4316/AECE.2024.04001.
[15] M. T. Nguyen and N. Rahnavard, “Cluster-Based Energy-Efficient Data Collection in Wireless Sensor Networks Utilizing Compressive Sensing,” 2013 IEEE Military Communications Conference, CA, USA, 2013, pp. 1708-1713, doi: 10.1109/MILCOM.2013.289.
[16] M. T. Nguyen, “Energy-Efficient Data Collection Method In Clustered Wireless Sensor Networks,” TNU Journal of Science and Technology, vol. 166, no. 6, pp. 121-124, 2017.
[17] R. Gu, Z. Yang, and Y. Ji, "Machine learning for intelligent optical networks: A comprehensive survey," J. Network Comput. Appl., vol. 157, pp. 102576-102618, 2020, doi: 10.1016/j.jnca.2020.102576.
[18] V. V. Vu, “An efficient semi-supervised graph based clustering,” Intell. Data Anal., vol. 22, no. 2, pp. 297-307, 2018, doi: 10.3233/IDA-163296.
[19] T. A. Pham, X. K. Dang, and N. S. Vo, “Optimising Maritime Big Data by K-means Clustering with Mapreduce Model,” Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, vol. 157, pp. 136-151, 2022, doi: 10.1007/978-3-031-08878-0_10.
[20] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53-65, 1987, doi: 10.1016/0377-0427(87)90125-7.
[21] M. B. Baylon, F. A. A. Uy, K. M. S. Montes, and K. A. D. Embalzado, "Threshold Determination Using Bi-hazard Fragility Curves for the Evaluation of Structural Health Monitoring of USHER Technology," IOP Conf. Ser.: Mater. Sci. Eng., vol. 739, 2020, Art. no. 012002, doi: 10.1088/1757-899X/739/1/012002.
DOI: https://doi.org/10.34238/tnu-jst.11711
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu