Ô NHIỄM ASEN TRONG ĐẤT: NGUYÊN NHÂN, ẢNH HƯỞNG VÀ CÁC GIẢI PHÁP XỬ LÝ HIỆU QUẢ: MỘT BÀI ĐÁNH GIÁ NGẮN
Thông tin bài báo
Ngày nhận bài: 02/01/25                Ngày hoàn thiện: 17/02/25                Ngày đăng: 19/02/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] M. H. Chowdhury, C. Deacon, G. D. Jones, S. M. I. Huq, P. N. H. Williams, W. L. H. E. Anamul, A. H. Price, G. J. Norton, and A. A. Meharg, “Arsenic in Bangladeshi Soils Related to Physiographic Region, Paddy Management, and Mirco- And Macro-Elemental Status,” The Science of the Total Environment, vol. 590–591, pp. 406–415, 2017.
[2] T.-Y. Lin, C.-C. Wei, C. Huang, C. Chang, F.-C. Hsu, and V. H. Liao, “Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release Into Groundwater in Arsenic-Contaminated Aquifers,” Journal of Agricultural and Food Chemistry, vol. 64, no. 11, pp. 2214-2222, 2016.
[3] S. I. Khan, A. Ahmed, M. Yunus, M. Rahman, S. K. Hore, M. Vahter, and M. A. Wahed, “Arsenic and Cadmium in Food-Chain in Bangladesh - An Exploratory Study,” Journal of Health Population and Nutrition, vol. 28, no. 6, pp. 578-584, 2010.
[4] R. Hindersah, A.M. Kalay, R.G. Risamasu, and T. Dewi, “Arsenic in Gold Mine Tailing and Agricultural Soil in Buru Island of Maluku,” Soil Rens Jurnal Ilmiah Lingkungan Tanah Pertanian, vol. 18, no. 1, pp. 10-15, 2020.
[5] G. J. Norton, T. Dasgupta, M. R. Islam, S. M. R. Islam, C. Deacon, F. Zhao, J. L. Stroud, S. P. McGrath, J. Feldmann, A. H. Price, and A. A. Meharg, “Arsenic Influence on Genetic Variation in Grain Trace-Element Nutrient Content in Bengal Delta Grown Rice,” Environmental Science & Technology, vol. 44, no. 21, pp. 8284-8288, 2010.
[6] K. M. McCarty, H. T. Hanh, and K.-W. Kim, “Arsenic Geochemistry and Human Health in South East Asia,” Reviews on Environmental Health, vol. 26, no. 1, pp. 71-78, 2011.
[7] B. D. Prasad and S. Sahni, “Mitigation of Arsenic Contamination Through Biotechnological Approaches in Rice,” Journal of Experimental Agriculture International, vol. 45, no. 12, pp. 180-185, 2023.
[8] F. Zhao, S. P. McGrath, and A. A. Meharg, “Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies,” Annual Review of Plant Biology, vol. 61, no. 1, pp. 535-559, 2010.
[9] S. Gupta, S. S. Mishra, and K. Shah, “Examining Contamination of Arsenic in Soil Around Thermal Power Plant at Dadri in India,” International Journal for Research in Applied Sciences and Biotechnology, vol. 9, no. 2, pp. 271–278, 2022.
[10] M. B. McBride, H. Shayler, J. Russell-Anelli, H. M. Spliethoff, and L. G. Marquez-Bravo, “Arsenic and Lead Uptake by Vegetable Crops Grown on an Old Orchard Site Amended With Compost,” Water Air & Soil Pollution, vol. 226, no. 8, 2015, Art. no. 265.
[11] Q. D. Le, “Using a tonguefish cynoglossus arel bloch & schneider, 1801 as bioindicator of metal contamination in Ha Long - Cat Hai area,” Vietnam Journal of Marine Science and Technology, vol. 13, no. 4, pp. 382-389, 2013.
[12] E. M. Muehe, T. Wang, C. F. Kerl, B. Planer-Friedrich, and S. Fendorf, “Rice Production Threatened by Coupled Stresses of Climate and Soil Arsenic,” Nature Communications, vol. 10, no. 1, 2019, Art. no. 4985.
[13] P. M. Finnegan and W. Chen, “Arsenic Toxicity: The Effects on Plant Metabolism,” Frontiers in Physiology, vol. 3, 2012, Art. no. 182.
[14] A. Pandey, S. K. Singh, S. Sharma, A. K. Mishra, S. S. Jatav, A. Patra, A. Bahuguna, S. Mukharjee, B. Yadav, and B. Pankaj, “Effect of Different Arsenic and Biochar Levels on Soil Microbial Population and Enzymatic Activity,” International Journal of Plant & Soil Science, vol. 35, no. 16, pp. 443-451, 2023.
[15] N. Noor, K. Mahmud, T. A. Chowdhury, and S. M. I. Huq, “The Use of Biochar as Ameliorator for Soil Arsenic,” Dhaka University Journal of Biological Sciences, vol. 24, no. 2, pp. 111-119, 2015.
[16] M. Islam and S. Managi, “Sustainable Adaptation to Multiple Water Risks in Agriculture: Evidence From Bangladesh,” Sustainability, vol. 10, no. 6, p. 1734, 2018.
[17] H. Yang and M. He, “Distribution and Speciation of Selenium, Antimony, and Arsenic in Soils and Sediments Around the Area of Xikuangshan (China),” Clean - Soil Air Water, vol. 44, no. 11, pp. 1538-1546, 2016.
[18] M. Z. U. Kamal and M. I. Miah, “Arsenic Speciation Techniques in Soil Water and Plant: An Overview,” in Arsenic Monitoring, Removal and Remediation, IntechOpen, 2022, pp. 52-68.
[19] B. M. Tu, L. F. Smith, and C. Pinsent, “Urinary Inorganic Arsenic in Residents Living in Close Proximity to a Nickel and Copper Smelter in Ontario, Canada,” Can J. Public Health, vol. 102, no. 6, pp. 467-471, 2011.
[20] S. Suren, W. Ampronpong, U. Pancharoen, and K. Maneeintr, “The Elimination of Trace Arsenic via Hollow Fiber Supported Liquid Membrane: Experiment and Mathematical Model,” Scientific Reports, vol. 11, no. 1, 2021, Art. no. 11790.
[21] S. Beal, M. A. Kelly, J. S. Stroup, B. P. Jackson, T. V. Lowell, and P. M. Tapia, “Natural and Anthropogenic Variations in Atmospheric Mercury Deposition During the Holocene Near Quelccaya Ice Cap, Peru,” Global Biogeochemical Cycles, vol. 28, no. 4, pp. 437-450, 2014.
[22] J.-L. Wang, L.-X. Chen, G.-Y. Chen, T.-Q. Chai, J.-X. Li, H. Chen, and F.-Q. Yang, “Construction of a novel cuboid-shape mn-urea nanozyme with arsenic(v)-enhanced oxidase-like activity as a colorimetric probe for the selective detection of inorganic arsenic,” Crystengcomm, vol. 26, no. 20, pp. 2641-2651, 2024.
[23] Q. Zhou, “Removal of As(III) and As(V) From Water Using Magnetic Core-Shell Nanomaterial Fe3O4@Polyaniline,” International Journal of Green Technology, vol. 1, no. 1, pp. 54-64, 2018.
[24] C. K. Lee, P. Soohyung, J.-H. Kim, and J. Jung, “Occurrence and Removal of Hazardous Chemicals and Toxic Metals in 27 Industrial Wastewater Treatment Plants in Korea,” Desalination and Water Treatment, vol. 54, no. 4-5, pp. 1141-1149, 2015.
[25] R. Zakhar, J. Derco, and F. Cacho, “An Overview of Main Arsenic Removal Technologies,” Acta Chimica Slovaca, vol. 11, no. 2, pp. 107-113, 2018.
[26] D. Chakraborti, M. M. Rahman, A. Mukherjee, M. Alauddin, M. M. Hassan, R. N. Dutta, S. Pati, S. Mukherjee, S. Roy, Q. Quamruzzman, M. Rahman, S. Morshed, T. Islam, S. Sorif, M. A. E. Selim, M. R. Islam, and M. M. Hossain, “Groundwater Arsenic Contamination in Bangladesh—21 Years of Research,” Journal of Trace Elements in Medicine and Biology, vol. 31, pp. 237-248, 2015.
[27] K. Hossain, S. Quaik, G. Pant, et al., “Arsenic Fate in the Ground Water and Its Effect on Soil-Crop Systems,” Research Journal of Environmental Toxicology, vol. 9, no. 5, pp. 231-240, 2015.
[28] S. Bhattacharya, G. Guha, K. Gupta, D. Chattopadhyay, A. Mukhopadhyay, and U. C. Ghosh, “Trend of arsenic pollution and subsequent bioaccumulation in Oryza sativa and Corchorus capsularis in Bengal Delta,” International Letters of Natural Sciences, vol. 21, pp. 1-9, 2014.
[29] G. J. Norton, C. Deacon, A. Mestrot, J. Feldmann, P. K. Jenkins, C. Baskaran, and A. A. Meharg, “Arsenic Speciation and Localization in Horticultural Produce Grown in a Historically Impacted Mining Region,” Environmental Science & Technology, vol. 47, no. 12, pp. 6164-6172, 2013.
[30] A. Mitra, S. Chatterjee, R. Moogouei, and D. K. Gupta, “Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review,” Agronomy, vol. 7, no. 4, 2017, Art. no. 67.
[31] I. Carabante, M. Grahn, A. Holmgren, J. Kumpienė, and J. Hedlund, “Influence of Zn(II) on the Adsorption of Arsenate Onto Ferrihydrite,” Environmental Science & Technology, vol. 46, no. 24, pp. 13152-13159, 2012.
[32] M. Radfard, H. Hashemi, M.A. Baghapour, et al., “Prediction of Human Health Risk and Disability-Adjusted Life Years Induced by Heavy Metals Exposure Through Drinking Water in Fars Province, Iran,” Scientific Reports, vol. 13, no. 1, 2023, Art. no. 19080.
[33] M. Argos, T. Kalra, P. J. Rathouz, Y. Chen, B. L. Pierce, F. Parvez, T. Islam, A. Ahmed, R. Z. Muhammad, R. Hasan, G. Sarwar, V. Slavkovich, A. V. Geen, J. H. Graziano, and H. Ahsan, “Arsenic Exposure From Drinking Water, and All-Cause and Chronic-Disease Mortalities in Bangladesh (HEALS): A Prospective Cohort Study,” The Lancet, vol. 376, no. 9737, pp. 252-258, 2010.
[34] A. Kumar, M. Ali, R. Kumar, M. Kumar, P. Sagar, R. Pandey, V. Akhouri, V. Kumar, G. Anand, P. K. Niraj, R. Rani, S. Kumar, D. Kumar, A. Bishwapriya, and A. Ghosh, “Arsenic Exposure in Indo Gangetic Plains of Bihar Causing Increased Cancer Risk,” Scientific Reports, vol. 11, no. 1, 2021, Art. no. 2376.
[35] L. Zheng, C. J. Kuo, J. J. Fadrowski, J. Agnew, V. M. Weaver, and A. Navas‐Acien, “Arsenic and Chronic Kidney Disease: A Systematic Review,” Current Environmental Health Reports, vol. 1, no. 3, pp. 192-207, 2014.
[36] N. S. Liao, E. Seto, B. Eskenazi, M. D. Wang, Y. Li, and J. Hua, “A Comprehensive Review of Arsenic Exposure and Risk From Rice and a Risk Assessment Among a Cohort of Adolescents in Kunming, China,” International Journal of Environmental Research and Public Health, vol. 15, no. 10, 2018, Art. no. 2191.
[37] W. A. Teasley, M. A. Limmer, and A. L. Seyfferth, “How Rice (Oryza Sativa L.) Responds to Elevated as Under Different Si-Rich Soil Amendments,” Environmental Science & Technology, vol. 51, no. 18, pp. 10335-10343, 2017.
[38] L. C. Roberts, S. J. Hug, A. Voegelin, J. Dittmar, R. Kretzschmar, B. Wehrli, G. C. Saha, A. B. M. Badruzzaman, and M. Ali, “Arsenic Dynamics in Porewater of an Intermittently Irrigated Paddy Field in Bangladesh,” Environmental Science & Technology, vol. 45, no. 3, pp. 971-976, 2010.
[39] N. M. Devi, C. K. Kundu, M. Ghosh, K. Bhattacharyya, H. Banerjee, and A. Majumder, “Arsenic Acquisition Pattern in Different Plant Parts of Aromatic Rice Cultivars,” Environment Conservation Journal, vol. 24, no. 1, pp. 238-242, 2023.
[40] L. Hu, X. Wang, Y. Zou, et al., “Effects of Inorganic and Organic Selenium Intervention on Resistance of Radish to Arsenic Stress,” Italian Journal of Food Science, vol. 34, no. 1, pp. 44-58, 2022.
[41] B. L. Batista, M. Nigar, A. Mestrot, B. A. Rocha, F. Barbosa, A. H. Price, A. Raab, and J. Feldmann, “Identification and Quantification of Phytochelatins in Roots of Rice to Long-Term Exposure: Evidence of Individual Role on Arsenic Accumulation and Translocation,” Journal of Experimental Botany, vol. 65, no. 6, pp. 1467-1479, 2014.
[42] E. D. Bergerová, D. Kimmer, M. Kovářová, L. Lovecká, I. Vincent, V. Adamec, K. Köbölová, and V. Sedlařík, “Investigation of Arsenic Removal From Aqueous Solution Through Selective Sorption and Nanofiber-Based Filters,” Journal of Environmental Health Science and Engineering, vol. 19, no. 2, pp. 1347-1360, 2021.
[43] S. Yao, Z. Liu, and Z. Shi, “Arsenic Removal From Aqueous Solutions by Adsorption Onto Iron Oxide/Activated Carbon Magnetic Composite,” Journal of Environmental Health Science and Engineering, vol. 12, no. 1, 2014, Art. no. e58.
[44] S. Lampis, C. Santi, A. Ciurli, M. Andreolli, and G. Vallini, “Promotion of Arsenic Phytoextraction Efficiency in the Fern Pteris Vittata by the Inoculation of as-Resistant Bacteria: A Soil Bioremediation Perspective,” Frontiers in Plant Science, vol. 6, pp. 55-63, 2015.
[45] S. Verma, P. Verma, A. K. Meher, S. Dwivedi, A. Bansiwal, V. Pande, P. Srivastava, P. Verma, R. D. Tripathi, and D. Chakrabarty, “A Novel Arsenic Methyltransferase Gene of Westerdykella Aurantiaca Isolated From Arsenic Contaminated Soil: Phylogenetic, Physiological, and Biochemical Studies and Its Role in Arsenic Bioremediation,” Metallomics, vol. 8, no. 3, pp. 344-353, 2016.
[46] Y.-C. Chang, A. Nawata, K.-Y. Jung, and S. Kikuchi, “Isolation and Characterization of an Arsenate-Reducing Bacterium and Its Application for Arsenic Extraction From Contaminated Soil,” Journal of Industrial Microbiology & Biotechnology, vol. 39, no. 1, pp. 37-44, 2012.
[47] M. Singh, P. Srivastava, P. C. Verma, R. N. Kharwar, N. Singh, and R. D. Tripathi, “Soil Fungi for Mycoremediation of Arsenic Pollution in Agriculture Soils,” Journal of Applied Microbiology, vol. 119, no. 5, pp. 1278-1290, 2015.
[48] M. D. Salam, A. Varma, D. Chaudhary, and H. Aggarwal, “Novel Arsenic Resistant Bacterium Sporosarcina Luteola M10 Having Potential Bioremediation Properties,” Journal of Microbiology & Experimentation, vol. 8, no. 6, pp. 213-218, 2020.
[49] S. Wang, S. Pan, G. M. Shah, Z. Zhang, L. Yang, and Y. Shi, “Enhancement in Arsenic Remediation by Maize (Zea Mays L.) Using Edta in Combination With Arbuscular Mycorrhizal Fungi,” Applied Ecology and Environmental Research, vol. 16, no. 5, pp. 5987-5999, 2018.
[50] S. Nakwanit, P. Visoottiviseth, S. Khokiattiwong, and W. Sangchoom, “Management of Arsenic-Accumulated Waste From Constructed Wetland Treatment of Mountain Tap-Water,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 1081-1085, 2011.
[51] K. Jomová, Z. Jenisová, S. Baroš, J. Líška, D. Hudecová, C. J. Rhodes, and M. Valko, “Arsenic: Toxicity, Oxidative Stress and Human Disease,” Journal of Applied Toxicology, vol. 31, no. 2, pp. 95-107, 2011.
DOI: https://doi.org/10.34238/tnu-jst.11807
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu