TẬP HÚT LÙI CỦA HỆ NAVIER-STOKES NGẪU NHIÊN VỚI MẬT ĐỘ NGẪU NHIÊN
Thông tin bài báo
Ngày nhận bài: 10/01/25                Ngày hoàn thiện: 17/02/25                Ngày đăng: 19/02/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] J. M. Ball, “Continuity properties and global attractors of generalized semiflows and the
Navier-Stokes equations,” J. Nonl. Sci., no. 7, pp. 475-502, 1997.
[2] T. Caraballo, J. Real, and P. E. Kloeden, “Unique strong solutions and V-attractor of a three dimensional system of globally modifed Navier-Stokes equations,” Adv. Nonlinear Stud., no. 6, pp. 411-436, 2006.
[3] T. Caraballo, G. Lukaszewicz, and J. Real, “Pullback attractors for non-autonomous 2D-NavierStokes equations in some unbounded domains,” C. R. Acad. Sci. Paris I, no. 342, pp. 263-268, 2006.
[4] P. E. Kloeden, J. A. Langa, and J. Real, “Pullback V-attractors of the three dimensional system of nonautonomous globally modified Navier-Stokes equations: existence and finite fractal dimension,” Commun. Pure Appl. Anal., no. 6, pp. 937-955, 2007.
[5] R. Rosa, “The global attractor for the 2D Navier-Stokes flow on some unbounded domains,” Nonlinear Analysis, TMA, no. 32, pp. 71-85, 1998.
[6] P. Marín-Rubio, A. M. Márquez-Durán, and J. Real, “Pullback attractors for globally modified Navier-Stokes equations with infinite delays,” Discrete Contin. Dyn. Syst. Ser-A, no. 31, pp. 779-796, 2011.
[7] F. Flandoli and B. Schmalfuß, “Random attractors for the 3D stochastic Navier-Stokes equations with multiplicative noise,” Stoch. Stoch. Rep., no. 59, pp. 21-45, 1996.
[8] T. H. Ho, K. M. Bui, and T. N. Pham, “Wong-Zakai approximation and attractors for stochastic three-dimensional globally modified Navier-Stokes equations driven by nonlinear noise,” Discrete and Continuous Dynamical Systems - Series B, vol. 29, no. 2, pp. 1069-1104, 2024.
[9] T. H. Ho and T. N. Pham, “Random attractors for three-dimensional stochastic globally modified Navier-Stokes equations driven by additive noise on unbounded domains,” Random Oper. Stoch. Equ., vol. 32, no. 3, pp. 223-239, 2024.
[10] B. Wang, “Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains,” Electronic Journal of Differential Equations, vol. 2012, no. 59, pp. 1-18, 2012.
[11] J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, (Cambridge Texts in Applied Mathematics, Series Number 28), Cambridge University Press, 2001.
DOI: https://doi.org/10.34238/tnu-jst.11859
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu