LẬP KẾ HOẠCH VẬN HÀNH NGÀY TỚI CHO HỆ THỐNG ĐIỆN HỖN HỢP NHIỆT ĐIỆN THAN VÀ TUABIN KHÍ CHU TRÌNH HỖN HỢP
Thông tin bài báo
Ngày nhận bài: 15/01/25                Ngày hoàn thiện: 28/02/25                Ngày đăng: 28/02/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] S. García-Marín, W. González-Vanegas, and C. E. Murillo-Sánchez, “MPNG: A MATPOWER-Based Tool for Optimal Power and Natural Gas Flow Analyses,” IEEE Trans. Power Syst., vol. 39, no. 4, pp. 5455–5464, Jul. 2024, doi: 10.1109/TPWRS.2022.3195684.
[2] S. Chen, A. J. Conejo, R. Sioshansi, and Z. Wei, “Unit Commitment With an Enhanced Natural Gas-Flow Model,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 3729–3738, Sep. 2019, doi: 10.1109/TPWRS.2019.2908895.
[3] S. Chen, A. J. Conejo, and Z. Wei, “Gas-Power Coordination: From Day-Ahead Scheduling to Actual Operation,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1532–1542, Mar. 2022, doi: 10.1109/TPWRS.2021.3098768.
[4] A. M. Elsayed, A. M. Maklad, and S. M. Farrag, “A new priority list unit commitment method for large-scale power systems,” in 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Oct. 2017, pp. 359–367. doi: 10.1109/MEPCON.2017.8301206.
[5] J. M. Arroyo and A. J. Conejo, “Multiperiod auction for a pool-based electricity market,” IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1225–1231, Oct. 2002, doi: 10.1109/TPWRS.2002.804952.
[6] A. L. Motto, F. D. Galiana, A. J. Conejo, and J. M. Arroyo, “Network-constrained multiperiod auction for a pool-based electricity market,” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 646–653, Aug. 2002, doi: 10.1109/TPWRS.2002.800909.
[7] D. Tuncer and B. Kocuk, “An MISOCP-Based Decomposition Approach for the Unit Commitment Problem With AC Power Flows,” IEEE Transactions on Power Systems, vol. 38, no. 4, pp. 3388–3400, Jul. 2023, doi: 10.1109/TPWRS.2022.3206136.
[8] F. J. Díaz, J. Contreras, J. I. Muñoz, and D. Pozo, “Optimal Scheduling of a Price-Taker Cascaded Reservoir System in a Pool-Based Electricity Market,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 604–615, May 2011, doi: 10.1109/TPWRS.2010.2063042.
[9] L. S. M. Guedes, P. D. M. Maia, A. C. Lisboa, D. A. G. Vieira, and R. R. Saldanha, “A Unit Commitment Algorithm and a Compact MILP Model for Short-Term Hydro-Power Generation Scheduling,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3381–3390, Sep. 2017, doi: 10.1109/TPWRS.2016.2641390.
[10] P. Xia, C. Deng, Y. Chen, and W. Yao, “MILP Based Robust Short-Term Scheduling for Wind–Thermal–Hydro Power System With Pumped Hydro Energy Storage,” IEEE Access, vol. 7, pp. 30261–30275, 2019, doi: 10.1109/ACCESS.2019.2895090.
[11] G. Morales-España, C. M. Correa-Posada, and A. Ramos, “Tight and Compact MIP Formulation of Configuration-Based Combined-Cycle Units,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1350–1359, Mar. 2016, doi: 10.1109/TPWRS.2015.2425833.
[12] X. Fang, L. Bai, F. Li, and B.-M. Hodge, “Hybrid component and configuration model for combined-cycle units in unit commitment problem,” Journal of Modern Power Systems and Clean Energy, vol. 6, no. 6, pp. 1332–1337, Nov. 2018, doi: 10.1007/s40565-018-0409-1.
[13] N. V. Pham, T. H. T. Nguyen, V. H. Trinh, and Q. C. Vu, “A MILP-based formulation for thermal-wind-BESS unit commitment problem considering network power loss,” TNU Journal of Science and Technology, vol. 227, no. 16, pp. 85–93, Oct. 2022, doi: 10.34238/tnu-jst.6485.
[14] H. Daneshi, A. L. Choobbari, M. Shahidehpour, and Z. Li, “Mixed integer programming method to solve security constrained unit commitment with restricted operating zone limits,” in 2008 IEEE International Conference on Electro/Information Technology, Ames, IA, USA: IEEE, May 2008, pp. 187–192. doi: 10.1109/EIT.2008.4554293.
[15] GAMS Development Corp., “GAMS Documentation 46,” Feb. 17, 2024. [Online]. Available: https://www.gams.com. [Accessed Feb. 25, 2024].
DOI: https://doi.org/10.34238/tnu-jst.11897
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu