NGHIÊN CỨU KHẢ NĂNG HẤP PHỤ AMONI TRONG NƯỚC CỦA VẬT LIỆU TỔ HỢP MnFe2O4 VÀ THAN HOẠT TÍNH TỪ VỎ CÀ PHÊ | Huy | TNU Journal of Science and Technology

NGHIÊN CỨU KHẢ NĂNG HẤP PHỤ AMONI TRONG NƯỚC CỦA VẬT LIỆU TỔ HỢP MnFe2O4 VÀ THAN HOẠT TÍNH TỪ VỎ CÀ PHÊ

Thông tin bài báo

Ngày nhận bài: 20/02/25                Ngày hoàn thiện: 28/03/25                Ngày đăng: 04/04/25

Các tác giả

1. Phạm Quang Huy, Trường Đại học Sư phạm Hà Nội 2
2. Nguyễn Thị Ngọc Ánh, Trường Đại học Sư phạm Hà Nội 2
3. Nguyễn Thị Hiền, Trường Đại học Sư phạm Hà Nội 2
4. Hà Thùy Linh, Trường Đại học Sư phạm Hà Nội 2
5. Hoàng Thảo Đan, Trường Đại học Sư phạm Hà Nội 2
6. Lê Phương Linh, Trường Đại học Sư phạm Hà Nội 2
7. Nguyễn Phương Anh, Trường Đại học Sư phạm Hà Nội 2
8. Đỗ Thị Thanh Ngân, Trường Đại học Sư phạm Hà Nội 2
9. Đỗ Thủy Tiên Email to author, Trường Đại học Sư phạm Hà Nội 2

Tóm tắt


Trong nghiên cứu này, vật liệu tổ hợp giữa MnFe2O4 và than hoạt tính từ vỏ cà phê (ký hiệu là MFO/ACF) được tổng hợp bằng phương pháp đồng kết tủa và thủy nhiệt và được sử dụng để khảo sát khả năng hấp phụ amoni trong nước. Đặc điểm bề mặt của vật liệu MFO/ACF được đánh giá bằng kính hiển vi điện tử quét (SEM) và phổ hồng ngoại biến đổi Fourier (FTIR). Khảo sát khả năng hấp phụ amoni của vật liệu thông qua nghiên cứu ảnh hưởng của pH, thời gian hấp phụ và nồng độ amoni ban đầu. Kết quả chỉ ra rằng vật liệu MFO/ACF có khả năng hấp phụ amoni khá tốt nhờ lực hút tĩnh điện và các nhóm chức trên bề mặt vật liệu tổ hợp. Dung lượng hấp phụ amoni cực đại của MFO/ACF tính theo mô hình Langmuir là 55,13 mg/g ở pH = 6, hàm lượng vật liệu hấp phụ là 0,6 g/L và thời gian tiếp xúc là 20 phút. Nghiên cứu động học cho thấy quá trình hấp phụ amoni bằng vật liệu tổ hợp MFO/ACF tuân theo mô hình động học bậc 2. Điều này cho thấy cơ chế của quá trình chủ yếu là hấp phụ hóa học. Vật liệu tổ hợp MFO/ACF hứa hẹn sẽ là một vật liệu có khả năng xử lý khá tốt amoni trong nước.

Từ khóa


MnFe2O4; Amoni; Vỏ cà phê; Than hoạt tính; Vật liệu tổ hợp

Toàn văn:

PDF

Tài liệu tham khảo


[1] H. Yang, X. Li, Y. Wang, J. Wang, L. Yang, Z. Ma, J. Luo, X. Cui, B. Yan, and G. Chen, "Effective Removal of Ammonium from Aqueous Solution by Ball-Milled Biochar Modified with NaOH," Processes, MDPI, vol. 11, pp. 1–12, 2023.

[2] V. P. Nguyen, K. H. Nguyen, V. L. Le, and V. T. Le, "Evaluation of NH4+ Adsorption Capacity in Water of Coffee Husk-Derived Biochar at Different Pyrolysis Temperatures," Int. J. Agron., vol. 2021, pp. 1- 10, 2021.

[3] T. M. Vu, V. T. Trinh, D. P. Doan, H. T. Van, T. V. Nguyen, S. Vigneswaran, and H. H. Ngo, "Removing ammonium from water using modified corncob-biochar," Sci. Total Environ., vol. 579, pp. 612–619, 2017.

[4] Y. Gao, Y. Ru, L. Zhou, X. Wang, and J. Wang, “Preparation and characterization of chitosan-zeolite molecular sieve composite for ammonia and nitrate removal,” Advanced Composites Letters, vol. 27, no. 5, 2018, doi: 10.1177/096369351802700502.

[5] Y. Xiao, H. Liang, and Z. Wang, “MnFe2O4/chitosan nanocomposites as a recyclable adsorbent for the removal of hexavalent chromium,” Mater. Res. Bull., vol. 48, no. 10, pp. 3910–3915, 2013.

[6] L. Yang, Y. Zhang, X. Liu, X. Jiang, Z. Zhang, T. Zhang, and L. Zhang, “The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4,” Chemical Engineering Journal, vol. 246, pp. 88-96, 2014.

[7] N. T. Nguyen, T. B. H. Pham, T. T. H. Le, N. A. Le, V. H. Tran, D. H. Vu, H. D. Le, V. K. Nguyen, and D. L. Tran, “Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution,” Mater. Sci. Eng. C, vol. 33, no. 3, pp. 1214–1218, 2013.

[8] T. L. H. Pham, T. Nguyen, L. Hoang, H. T. Le, V. Q. Nguyen, A. T. Pham, X. D. Ngo, N. P. Vu, and A. T. Le, “Functional manganese ferrite/graphene oxide nanocomposites: Effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(v) ions from aqueous solution,” RSC Adv., vol. 8, no. 22, pp. 12376–12389, 2018.

[9] M. A. M. Taguba, D. C. Ong, B. M. B. Ensano, C. C. Kan, N. Grisdanurak, J. J. Yee, and M. D. G. de Luna, “Nonlinear Isotherm and Kinetic Modeling of Cu(II) and Pb(II) uptake from water by MnFe2O4/Chitosan Nanoadsorbents,” Water, vol. 13, 2021, Art. no. 1662, doi: 10.3390/w13121662.

[10] V. T. Trinh, K. C. Ngo, T. T. Do, T. Nguyen, V. Q. Nguyen, and T. L. H. Pham, “Carbon ‑ encapsulated MnFe2O4 nanoparticles: effects of carbon on structure, magnetic properties and Cr (VI) removal efficiency,” Applied Physics. A, vol. 126, pp. 577-589, 2020.

[11] F. Liao, G. Diao, and H. Li, “Green synthesis of graphene oxide-MnFe2O4 composites and their application in removing heavy metal ions,” Micro Nano Lett., vol. 15, no. 1, pp. 7–12, 2020.

[12] E. Stokstad, “Air pollution. Ammonia pollution from farming may exact hefty health costs,” Science, vol. 343, 2014, Art. no. 238, doi: 10.1126/science.343.6168.238.

[13] Y. Qin, X. Zhu, Q. Su, et al., “Enhanced removal of ammonium from water by ball-milledbiochar,” Environ. Geochem. Health, vol. 42, pp. 1579-1587, 2020.

[14] Z. Ma, Q. Li, Q. Yue, B. Gao, W. Li, X. Xu, and Q. Zhong, “Adsorption removal of ammonium and phosphate fromwater by fertilizer controlled release agent prepared fromwheat straw,” Chemical Engineering Journal, vol. 171, no. 3, pp. 1209-1217, 2011.

[15] B. Wang, J. Lehmann, K. Hanley, R. Hestrin, and A. Enders, “Adsorption and desorption of ammonium bymaple wood biochar as a function of oxidation and pH,” Chemosphere, vol. 138, pp. 120-126, 2015.

[16] T. T. Do, V. T. Trinh, and K. C. Ngo, “Experimental results of adsorption of Ni (II) from wastewater using coffee husk based activated carbon,” Vietnam Journal of Science and Technology, vol. 56, no. 2C, pp. 126-132, 2018.

[17] T. N. Nguyen, T. P. A. Nguyen, T. N. A. Nguyen, T. H. Pham, T. T. Do, and T. H. Nguyen, “Study on the efective removeral ammonium from water of H2O2 modified – biochar from coffee husk,” TNU Journal of Science and Technology, vol. 229, no. 10, pp. 160-167, 2024.

[18] Y. Yang, T. M. P. Nguyen, H. T. Van, et al., “ZnO nanoparticles loaded rice husk biochar as an effective adsorbent for removing reactive red 24 from aqueous solution,” Mater Sci Semicond Process, vol. 150, 2022, Art. no. 106960, doi: 10.1016/j.mssp.2022.106960.

[19] L. L. Díaz-Muñoz, A. Bonilla-Petriciolet, H. E. Reynel-Ávila, and D. I. Mendoza-Castillo, “Sorption of heavy metal ions from aqueous solution using acid-treated avocado kernel seeds and its FTIR spectroscopy characterization,” Journal of Molecular Liquids, vol. 215, pp. 555–564, 2016.

[20] S. Kumar, R. R. Nair, P. B. Pillai, S. N. Gupta, M. A. R. Iyengar, and A. Sood, “Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water,ACS Appl. Mater. Interfaces, vol. 6, no. 20, pp. 17426–17436, 2014.

[21] A. M. Jacintha, V. Umapathy, P. Neeraja, and S. R. J. Rajkumar, “Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities,” J. Nanostructure Chem., vol. 7, no. 4, pp. 375–387, 2017.

[22] T. M. Vu and V. T. Trinh, “Research on the ability to treat ammonium in water environment of biochar from corn cobs modified with H3PO4 and NaOH,” VNU Journal of Science: Earth and Environmental Sciences, vol. 32, no. 1S, pp. 274-281, 2016.

[23] M. Kosmulski, “The pH dependent surface charging and points of zero charge. VII. Update,” Adv. Colloid Interface Sci., vol. 251, pp. 115-138, 2018.

[24] R. Gottipati and S. Mishra, “Preparation and Characterization of Microporous Activated Carbon from Biomass and its Application in the Removal of Chromium(VI) from Aqueous Phase,” Thesis of Doctor of Philosophy in Chemical Engineering, National Institute of Technology Rourkela, Odisha, 2012.

[25] E. Marañón, M. Ulmanu, Y. Fernández, I. Anger, and L. Castrillón, “Removal of ammonium from aqueous solutions with volcanic tuff,” Journal of Hazardous Materials, vol. 137, no. 3, pp. 1402-1409, 2006.

[26] T. D. Nguyen, V. Q. Nguyen, H. T. Van, et al., “Study on treatment of ammonium in aqueous solution by commercial Zeolite,” TNU Journal of Science and Technology, vol. 227, no. 08, pp. 3-11, 2022.

[27] T. T. H. Vu, T. H. Nguyen, T. N. Nguyen, Q. H. Pham, and T. T. Do, “Study on ammonium adsorption in aqueous solution using Fe3O4/ZnO,” TNU Journal of Science and Technology, vol. 229, no. 10, pp. 84-91, 2024.

[28] Z. Hussein, R. Kumar, and D. Meghavatu, “Kinetics and Thermodynamics of Adsorption Process Using a Spent-FCC Catalyst,” International Journal of Engineering & Technology, vol. 7, pp. 84-287, 2018.

[29] J. Song, V. Srivastava, T. Kohout, et al., “Montmorillonite-anchored magnetite nanocomposite for recovery of ammonium from stormwater and its reuse in adsorption of Sc3+,” Nanotechnol. Environ. Eng., vol. 6, pp. 1-14, 2021.

[30] H. L. Nguyen, K. C. Ngo, L. M. Tran, et al., “Biochar of post-extraction coffee bean ground as materials for ammonium adsorption,” Vietnam journal of Science and Technology, vol. 62, pp. 324–334, 2024.




DOI: https://doi.org/10.34238/tnu-jst.12099

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved