KIỂM SOÁT HÌNH THÁI BỀ MẶT CHO MỤC ĐÍCH TỰ LÀM SẠCH VÀ CHỐNG BĂNG TUYẾT TRÊN KIM LOẠI ĐỒNG
Thông tin bài báo
Ngày nhận bài: 25/04/25                Ngày hoàn thiện: 26/06/25                Ngày đăng: 26/06/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] H. Xiang, H. Xia, Y. Chen, Y. Wu, H. Chen, and M. Yan, "Pavement anti-icing coating based on a functional composite of NaCl microcapsules," Constr. Build Mater., vol. 307, 2021, Art. no. 125010, doi: 10.1016/j.conbuildmat.2021.125010.
[2] Q. Chen, M. Fang, R. Guo, L. Li, Y. Tan, W. Qin, N. Liu, and Z. Mo, "Multi-functional and durable anti-corrosion coatings with hydrophobic, freeze time retardation and photothermal properties by means of a simple spraying method," Colloids Surfaces A Physicochem Eng Asp., vol. 679, 2023, Art. no. 132549, doi: 10.1016/j.colsurfa.2023.132549.
[3] J. Zhao, X. Wang, L. Xin, J. Ren, Y. Cao, and Y. Tian, "Concrete pavement with microwave heating enhancement functional layer for efficient de-icing: Design and case study," Cold Reg. Sci. Technol., vol. 210, 2023, Art. no. 103846, doi: 10.1016/j.coldregions.2023.103846.
[4] T. H. H. Vu, X. T. Mai, and T. B. Nguyen, "Anti-icing approach on flexible slippery microstructure thin-film," Cold Reg. Sci. Technol., vol. 186, 2021, Art. no. 103280, doi: 10.1016/j.coldregions.2021.103280.
[5] T. H. H. Vu, T. C. Do, V. H. Chu, M. A. Pham, T. M. T. Nguyen, T. T. Bui, T. M. Duong, S. Sonemany, and T. B. Nguyen, "Icephobic approach on hierarchical structure polymer thin-film," Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 13, 2022, Art. no. 15004, doi: 10.1088/2043-6262/ac5400.
[6] T. M. T. Nguyen and T. B. Nguyen, "Proposed Surface Topography for Frosting Inhibition and Ease Ice Removal," J. Tribol., vol. 147, 2025, doi: 10.1115/1.4067554.
[7] C. Lu, Z. Zhang, Y. Qiang, F. Zhao, and D. Wang, "A hydrophobic and sustainable anti-icing sand fog seal for asphalt pavement: Its preparation and characterization," Constr. Build Mater., vol. 401, 2023, Art. no. 132918, doi: 10.1016/j.conbuildmat.2023.132918.
[8] T. Heckenthaler, S. Sadhujan, Y. Morgenstern, P. Natarajan, M. Bashouti, and Y. Kaufman, "Self-Cleaning Mechanism: Why Nanotexture and Hydrophobicity Matter," Langmuir., vol. 35, pp. 15526–15534, 2019, doi: 10.1021/acs.langmuir.9b01874.
[9] N. T. Padmanabhan and H. John, "Titanium dioxide based self-cleaning smart surfaces: A short review," J. Environ. Chem. Eng., vol. 8, 2020, Art. no. 104211, doi: 10.1016/j.jece.2020.104211.
[10] K. M. Wisdom, J. A. Watson, X. Qu, F. Liu, G. S. Watson, and C.-H. Chen, "Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate," Proc. Natl. Acad Sci., vol. 110, pp. 7992–7997, 2013, doi: 10.1073/pnas.1210770110.
[11] Y. Liu, H. Sun, X. Song, and C. Liu, "A mechanically durable induction heating coating with desirable anti-/de-icing performance," Surf Eng., vol. 39, pp. 413–420, 2023, doi: 10.1080/02670844.2023.2229563.
[12] N. Karpen, S. Diebald, F. Dezitter, and E. Bonaccurso, "Propeller-integrated airfoil heater system for small multirotor drones in icing environments: Anti-icing feasibility study," Cold Reg. Sci. Technol., vol. 201, 2022, Art. no. 103616, doi: 10.1016/j.coldregions.2022.103616.
[13] S. Zhang, F. Gao, Z. Jiang, Q. He, J. Lu, Y. Hou, X. Zhan, and Q. Zhang, "Bioinspired durable interpenetrating network anti-icing coatings enabled by binders and hydrophobic-ion specific synergies," Chem. Eng J., vol. 479, 2024, Art. no. 147836, doi: 10.1016/j.cej.2023.147836.
[14] Y. Yu, B. Jin, M. I. Jamil, D. Cheng, Q. Zhang, X. Zhan, and F. Chen, "Highly Stable Amphiphilic Organogel with Exceptional Anti-icing Performance," ACS Appl. Mater Interfaces, vol. 11, pp. 12838–12845, 2019, doi: 10.1021/acsami.8b20352.
[15] V.-H. Nguyen, B. D. Nguyen, H. T. Pham, S. S. Lam, D.-V.N. Vo, M. Shokouhimehr, T. H. H. Vu, T.-B. Nguyen, S. Y. Kim, and Q. V. Le, "Anti-icing performance on aluminum surfaces and proposed model for freezing time calculation," Sci. Rep., vol. 11, 2021, doi: 10.1038/s41598-020-80886-x.
[16] S.-C. Park, N. Kim, S. Ji, and H. Lim, "Fabrication and characterization of moth-eye mimicking nanostructured convex lens," Microelectron Eng., vol. 158, pp. 35–40, 2016, doi: 10.1016/j.mee.2016.03.011.
[17] H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, and W. Barthlott, "Superhydrophobicity in perfection: the outstanding properties of the lotus leaf," Beilstein J. Nanotechnol., vol. 2, pp. 152–161, 2011.
[18] F. Nilsson, A. Moyassari, Á. Bautista, A. Castro, I. Arbeloa, M. Järn, U. Lundgren, J. Welinder, and K. Johansson, "Modelling anti-icing of railway overhead catenary wires by resistive heating," Int. J. Heat Mass Transf., vol. 143, 2019, Art. no. 118505, doi: 10.1016/j.ijheatmasstransfer.2019.118505.
[19] Y. Liu, X. Li, J. Jin, J. Liu, Y. Yan, Z. Han, and L. Ren, "Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model," Appl. Surf Sci., vol. 400, pp. 498–505, 2017, doi: 10.1016/j.apsusc.2016.12.219.
[20] A.-S. Milaković, F. Li, R. U. F. von Bock und Polach, and S. Ehlers, "Equivalent ice thickness in ship ice transit simulations: overview of existing definitions and proposition of an improved one," Sh. Technol. Res., vol. 67, 2019, doi: 10.1080/09377255.2019.1655260.
[21] H.-W. Yun, G.-M. Choi, H. K. Woo, S. J. Oh, and S.-H. Hong, "Superhydrophobic, antireflective, flexible hard coatings with mechanically ultra-resilient moth-eye structure for foldable displays," Curr. Appl. Phys., vol. 20, pp. 1163–1170, 2020, doi: 10.1016/j.cap.2020.07.001.
[22] M. Hasegawa, H. Endo, K. Morita, H. Sakaue, and S. Kimura, "Behavior of Sliding Angle as Function of Temperature Difference between Droplet and Superhydrophobic Coating for Aircraft Ice Protection Systems," Aerospace, vol. 8, 2021, doi: 10.3390/aerospace8080219.
[23] S. Xuan, H. Yin, G. Li, Z. Zhang, Y. Jiao, Z. Liao, J. Li, S. Liu, Y. Wang, C. Tang, W. Wu, G. Li, and K. Yin, "Trifolium repens L.-Like Periodic Micronano Structured Superhydrophobic Surface with Ultralow Ice Adhesion for Efficient Anti-Icing/Deicing," ACS Nano., vol. 17, pp. 21749–21760, 2023, doi: 10.1021/acsnano.3c07385.
[24] X. Huang, M. Sun, X. Shi, J. Shao, M. Jin, W. Liu, R. Zhang, S. Huang, and Y. Ye, "Chemical vapor deposition of transparent superhydrophobic anti-Icing coatings with tailored polymer nanoarray architecture," Chem. Eng. J., vol. 454, 2023, Art. no. 139981, doi: 10.1016/j.cej.2022.139981.
[25] X. Li, G. Wang, A. S. Moita, C. Zhang, S. Wang, and Y. Liu, "Fabrication of bio-inspired non-fluorinated superhydrophobic surfaces with anti-icing property and its wettability transformation analysis," Appl. Surf. Sci., vol. 505, 2020, Art. no. 144386, doi: 10.1016/j.apsusc.2019.144386.
[26] W. Hou, Y. Shen, J. Tao, Y. Xu, J. Jiang, H. Chen, and Z. Jia, "Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching," Colloids Surfaces A Physicochem Eng Asp., vol. 586, 2020, Art. no. 124180, doi: 10.1016/j.colsurfa.2019.124180.
[27] T.-B. Nguyen, S. Park, and H. Lim, "Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces," Appl. Surf. Sci., vol. 435, pp. 585–591, 2018, doi: 10.1016/j.apsusc.2017.11.137.
DOI: https://doi.org/10.34238/tnu-jst.12678
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





