NÂNG CAO HIỆU QUẢ QUANG XÚC TÁC PHÂN HỦY XANH METHYLENE BẰNG TiO2 BIẾN TÍNH VỚI Ag/W | Anh | TNU Journal of Science and Technology

NÂNG CAO HIỆU QUẢ QUANG XÚC TÁC PHÂN HỦY XANH METHYLENE BẰNG TiO2 BIẾN TÍNH VỚI Ag/W

Thông tin bài báo

Ngày nhận bài: 08/07/25                Ngày hoàn thiện: 21/11/25                Ngày đăng: 25/11/25

Các tác giả

1. Phạm Tuấn Anh, Đại học Phenikaa
2. Nguyễn Thị Thúy, Đại học Phenikaa
3. Đặng Viết Quang Email to author, Đại học Phenikaa

Tóm tắt


Trong nghiên cứu này, TiO2 được biến tínhbằng phương pháp tẩm ướt với dung dịch AgNO3 và Na2WO4 theo tỉ lệ mol của từng nguyên tố Ag/Ti và W/Ti từ 0,01 đến 0,5%. Mẫu sau tẩm được sấy khô và nung ở 500 oC để tăng cường liên kết giữa Ag và W với TiO2. Các phương pháp chụp ảnh hiển vi điện tử quét, nhiễu xạ tia X, quang phổ hồng ngoại biến đổi Fourier và quang phổ phản xạ khuếch tán tử ngoại – khả kiến được sử dụng để nghiên cứu đặc tính của vật liệu. Khả năng quang xúc tác của vật liệu được nghiên cứu thông qua sự phân hủy dung dịch xanh methylene dưới ánh sáng tử ngoại. Kết quả nghiên cứu cho thấy, cấu trúc tinh thể và năng lượng vùng cấm của TiO2 không thay đổi đáng kể, tuy nhiên, khả năng quang xúc tác của TiO2 tăng lên một cách rõ rệt. TiO2 xử lý bằng dung dịch AgNO3 và Na2WO4 với tỉ lệ số mol 0,05% cho hiệu quả phân hủy xanh methylene tốt nhất, đạt 68% so với vật liệu TiO2 ban đầu là 62%. Kết quả này cho thấy tẩm ướt là phương pháp đơn giản và hiệu quả trong biến tính TiO2.

Từ khóa


Biến tính; Vật liệu bán dẫn; Xúc tác quang; TiO2; Xanh methylene

Toàn văn:

PDF

Tài liệu tham khảo


[1] S. K. Loeb, P. J. Alvarez, J. A. Brame, E. L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q. Li, G. Li-Puma, and X. Quan, "The technology horizon for photocatalytic water treatment: sunrise or sunset?," Environ. Sci. Technol., vol. 53, no. 6, pp. 2937–2947, 2019.

[2] Q. Guo, C. Zhou, Z. Ma, and X. Yang, "Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges," Advanced Materials, vol. 31, 2019, Art. no. 1901997.

[3] H. Hoang, T. A. Pham, V.-D. Dao, and V. Q. Dang, "Greener method for the application of TiO2 nanoparticles to remove herbicide in water," Journal of Analytical Methods in Chemistry, vol. 2023, 2023, Art. no. 3806240.

[4] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, and Y. He, "An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures," Water Research, vol. 79, pp. 128-146, 2015.

[5] T. Mao, J. Zha, Y. Hu, Q. Chen, J. Zhang, and X. Luo, "Research progress of TiO2 modification and photodegradation of organic pollutants," Inorganics, vol. 12, 2024, Art. no. 178.

[6] M. Humayun, F. Raziq, A. Khan, and W. Luo, "Modification strategies of TiO2 for potential applications in photocatalysis: a critical review," Green Chemistry Letters and Reviews, vol. 11, pp. 86-102, 2018.

[7] A. Giampiccolo, D. M. Tobaldi, E. Jones, J. A. Labrincha, R. Kurchania, M. P. Ansell, and R. J. Ball, "UV/visible sol gel W–TiO2 photocatalytic coatings for interior building surfaces," Building and Environment, vol. 205, 2021, Art. no. 108203.

[8] M. Crişan, D. Mardare, A. Ianculescu, N. Drăgan, I. Niţoi, D. Crişan, M. Voicescu, L. Todan, P. Oancea, and C. Adomniţei, "Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water," Applied Surface Science, vol. 455, pp. 201-215, 2018.

[9] R. Li, T. Li, and Q. Zhou, "Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—a review," Catalysts, vol. 10, 2020, Art. no. 804.

[10] F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, "Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach," The Journal of Physical Chemistry C, 115, pp. 13285-13292, 2011.

[11] T. S. Natarajan, V. Mozhiarasi, and R. J. Tayade, "Nitrogen doped titanium dioxide (N-TiO2): synopsis of synthesis methodologies, doping mechanisms, property evaluation and visible light photocatalytic applications," Photochem, vol. 1, pp. 371-410, 2021.

[12] R. Shan, L. Lu, J. Gu, Y. Zhang, H. Yuan, Y. Chen, and B. Luo, "Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions," Materials Science in Semiconductor Processing, vol. 114, 2020, Art. no. 105088.

[13] D. Tobaldi, R. Pullar, A. Gualtieri, M. Seabra, and J. Labrincha, "Sol–gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag-and W/Ag co-doped TiO2 nanopowders," Chemical Engineering Journal, vol. 214, pp. 364-375, 2013.

[14] R. Nawaz, M. M. Hanafiah, M. Ali, M. Anjum, Z. A. Baki, S. D. Mekkey, S. Ullah, S. Khurshid, H. Ullah, and U. Arshad, "Review of the performance and energy requirements of metals modified TiO2 materials based photocatalysis for phenolic compounds degradation: A case of agro-industrial effluent," Journal of Environmental Chemical Engineering, vol. 12, 2024, Art. no. 112766.

[15] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, "Understanding TiO2 Photocatalysis: Mechanisms and Materials," Chemical Reviews, vol. 114, pp. 9919-9986, 2014.

[16] R. J. Tayade, R. G. Kulkarni, and R. V. Jasra, "Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water," Industrial & Engineering Chemistry Research, vol. 45, pp. 5231-5238, 2006.

[17] A. Amorós-Pérez, L. Cano-Casanova, A. Castillo-Deltell, M.Á. Lillo-Ródenas, and M.d.C. Román-Martínez, "TiO2 modification with transition metallic species (Cr, Co, Ni, and Cu) for photocatalytic abatement of acetic acid in liquid phase and propene in gas phase," Materials, vol. 12, 2018, Art. no. 40.

[18] T. N. Rao, P. Babji, B. Parvatamma, and T.M. Naidu, "Decontamination of pesticide residues in water samples using copper and zinc co-doped titania nanocatalyst," Environmental Engineering & Management Journal (EEMJ), vol. 19, pp. 721-731, 2020.

[19] G. Sukhadeve and R. Gedam, "Visible light assisted photocatalytic degradation of mixture of reactive ternary dye solution by Zn–Fe co-doped TiO2 nanoparticles," Chemosphere, vol. 341, 2023, Art. no. 139990.

[20] P. Makuła, M. Pacia, and W. Macyk, "How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra," J. Phys. Chem. Lett., vol. 9, no. 23, pp. 6814-6817, 2018.




DOI: https://doi.org/10.34238/tnu-jst.13195

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved