ƯỚC LƯỢNG TRONG MÔ HÌNH HỒI QUI POISSON GIÃN NỞ SỐ KHÔNG KIỂM DUYỆT BÊN PHẢI
Thông tin bài báo
Ngày nhận bài: 11/06/21                Ngày hoàn thiện: 29/11/21                Ngày đăng: 30/11/21Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] P. McCullagh and J.A. Nelder, Generalized linear models (Second edition).Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1989.
[2] D. Lambert, "Zero-inflated Poisson regression, with an application to defects in manufacturing," Technometrics, vol. 34, no. 1, pp. 1-14, 1992.
[3] E. Dietz and Bohning, "On estimation of the Poisson parameter in zero-modified Poisson models, "Computational Statistics & Data Analysis , vol. 34, no. 4, pp. 441-459, 2000.
[4] H. K. Lim, W. K. Li, andP. L.H. Yu,"Zero-inflated Poisson regression mixture model," Computational Statistics & Data Analysis, vol. 71, pp.151-158, 2014.
[5] A. Monod, "Random effects modeling and the zero-inflated Poisson distribution," Communications in Statistics. Theory and Methods, vol. 43, no. 4, pp. 664-680, 2014.
[6] D. B. Hall, "Zero-inflated Poisson and binomial regression with random effects: a case study," Biometrics, vol. 56, no. 4, pp. 1030-1039, 2000.
[7] Y. Min and A. Agresti, "Random effect models for repeated measures of zero-inflated count data," Statistical Modelling, vol. 5, no. 1, pp. 1-19, 2005.
[8] K. F. Lam, H. Xue, and Y. B. Cheung, "Semiparametric analysis of zero-inflated count data," Biometrics, vol. 62, no. 4, pp. 996-1003, 2006.
[9] J. Feng, and Z. Zhu, "Semiparametric analysis of longitudinal zero-inflated count data," Journal of Multivariate Analysis, vol. 102, no. 1, pp. 61-72, 2011.
[10] M. Ridout, J. Hinde, and C. G. B. Demetrio, "A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives," Biometrics, vol. 57, no. 1, pp. 219-223, 2001.
[11] A. Moghimbeigi, M. R. Eshraghian,K. Mohammad, and B. McArdle, "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, vol. 35, no. 9, pp. 1193-1202, 2008.
[12] S. M. Mwalili, E. Lesaffre, and D. Declerck, "The zero-inflated negative binomial regression model with correction for misclassification: an example in caries research," Statistical Methods in Medical Research, vol. 17, no. 2, pp. 123-139, 2008.
[13] S. E. Saffari, and R. Adnan, "Zero-inflated Poisson regression models with right censored count data," Matematika, vol. 27, no. 1, pp. 21-29, 2001.
[14] C. Czado, V. Erhardt, A. Min, and S. Wagner, "Zero-inflated generalized Poisson models with regression effects on the mean, dispersion and zero-inflation level applied to patent outsourcing rates," Statistical Modelling, vol. 7, no. 2, pp.125-153, 2007.
[15] L. Fahrmeir and H. Kaufmann, "Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models," The Annals of Statistics, vol. 13, no. 1, pp. 342-368, 1985.
[16] G. A.F.Seber and A. J. Lee, Linear Regression Analysis. Wiley Series in Probability and Statistics. Wiley, 2012.
[17] R. A. Maller, "Asymptotics of regressions with stationary and nonstationary residuals," Stochastic Processes and their Applications, vol. 105, no. 1, pp. 33-67, 2003.
[18] C. Czado and A. Min, "Consistency and asymptotic normality of the maximum likelihood estimator in a zero-inflated generalized Poisson regression," Collaborative Research Center 386, Discussion Paper 423, Ludwig-Maximilians-Universitat, M¨ unchen¨ , 2005.
DOI: https://doi.org/10.34238/tnu-jst.4636
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu