NGHIÊN CỨU TRẠNG THÁI ỨNG SUẤT BIẾN DẠNG TẤM TRÒN THEO LÝ THUYẾT PHI CỔ ĐIỂN BẰNG PHƯƠNG PHÁP SAI PHÂN HỮU HẠN
Thông tin bài báo
Ngày nhận bài: 13/03/22                Ngày hoàn thiện: 12/05/22                Ngày đăng: 19/05/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] S. P. Timoshenko and S. Voinovsky-Krieger, Plates and shells, (in Russian), Moscow, 1966, p. 636.
[2] V. V. Vasiliev and S. A. Lurie, “On the problem of constructing a non-classical theory of plates,” (in Russian), Izv. AN. MTT, no. 2, pp. 158-167, 1990.
[3] V. V. Firsanov, “Study of stress-Deformed State of Rectangular Plates Based on Nonclassical Theory,” Journal of Machinery Manufacture and Reliability, vol. 45, no. 6, pp. 515-522, 2016.
[4] V. V. Firsanov, “The stressed state of the “boundary layer” type cylindrical shells investigated according to a nonclassical theory,” Journal of machinery, manufacture and reliabitity, vol. 47, no. 3, pp. 241-248, 2018.
[5] Q. H. Doan and V. V. Firsanov, “Edge stress state of a rectangular plate with variable thickness based on a refined theory,” (in Russian), MAI Proceedings, Moscow, no. 110, 2020, doi: 10.34759/trd-2020-110-10.
[6] Q. H. Doan, “Study on the stress-deformed state of rectangular plate with variable thickness according to the non-classical theory” TNU Journal of Science and Technology, vol. 226, no. 11, pp. 124-130, 2021, doi: 10.34238/tnu-jst.4521.
[7] V. V. Firsanov and V. T. Pham, “Research of the stress-strain state of conical shell under the action of local load based on the non-classical theory,” Journal of Mechanical Engineering Research and Developments, vol. 43, no. 4, pp. 24-32, 2020.
[8] V. V. Firsanov and V. T. Pham, “Stress-strain state of the spherical shell exposed to an arbitrary load based on a non-classical theory,” (in Russian), Problems of Strength and Plasticity, vol. 81, no. 3, pp. 359-368, 2019.
[9] Md. Roknuzzaman, B. Hossain, R. Haque, and T. U. Ahmed, “Analysis of Rectangular Plate with Opening by Finite Difference Method,” American Journal of Civil Engineering and Architecture, vol. 3, pp. 165-173, 2015, doi: 10.12691/ajcea-3-5-3.
[10] P. Katarina, H. Marko, and B. Zlatko, “Finite difference solution of plate bending using Wolfram Mathematica,” Tehnički glasnik, vol. 13, pp. 241-247, 2019, doi: 10.31803/tg-20190328111708.DOI: https://doi.org/10.34238/tnu-jst.5674
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu