EPSTEIN BARR VIRUS AND NASOPHARYNGEAL CANCER | Ngọc | TNU Journal of Science and Technology

EPSTEIN BARR VIRUS AND NASOPHARYNGEAL CANCER

About this article

Received: 27/06/22                Revised: 29/07/22                Published: 31/07/22

Authors

1. Tran Bao Ngoc Email to author, TNU – University of Medicine and Pharmacy
2. Tran Thi Kim Phuong, TNU – University of Medicine and Pharmacy
3. Nguyen Thi Hoa, TNU – University of Medicine and Pharmacy
4. Le Thi Huong Lan, Thai Nguyen National Hospital

Abstract


Epstein-Barr virus, was discovered in 1964, up to now was believed to be associated with many cancers such as nasopharyngeal cancer, gastric cancer and malignant lymphoma… This review focuses on analyzing the advantages and disadvantages of Epstein-Barr virus testing techniques and their clinical application in the treatment of Epstein-Barr virus -positive nasopharyngeal cancer patients according to the motto of personalized medicine. We searched, analyzed and synthesized related articles on Pubmed. Results showed there have been many methods of Epstein-Barr virus testing from qualitative to quantitative, with different advantages/disadvantages, in which in situ hybridization and PCR are preferred. The treatment of nasopharyngeal cancer with positive Epstein-Barr virus is still based on radiotherapy alone (early stage disease) or radiation therapy combined chemotherapy (later stage), but Epstein-Barr virus load is related to prognostic factor, emerging immunotherapy has had promising results. Thus, based on its results, quantitative test is recommended for clinicians in the disease treatment and prognosis, especially in nasopharyngeal cancer.

Keywords


EBV; Cancer; Testing; Nasopharyngeal cancer; Treatment

References


[1] S. K. Dunmire, P. S. Verghese, and H. H. Balfour, “Jr. Primary Epstein-Barr virus infection,” J Clin Virol., vol. 102, pp. 84-92, 2018, doi: 10.1016/j.jcv.2018.03.001.

[2] S. A. Connolly, T. S. Jardetzky, and R. Longnecker, “The structural basis of herpesvirus entry,” Nat Rev Microbiol., vol. 19, no. 2, pp. 110-121, 2021, doi: 10.1038/s41579-020-00448-w.

[3] M. A. H. AbuSalah, S. H. Gan, M. A. I. Al-Hatamleh, A. A. Irekeola, R. H. Shueb, and C. Y. Yean, “Recent Advances in Diagnostic Approaches for Epstein-Barr Virus,” Pathogens, vol. 9, no. 3, 2020, doi: 10.3390/pathogens9030226.

[4] J. Yang, Z. Liu, B. Zeng, G. Hu, and R. Gan, “Epstein-Barr virus-associated gastric cancer: A distinct subtype,” Cancer Lett., vol. 495, pp. 191-199, 2020, doi: 10.1016/j.canlet.2020.09.019.

[5] S. Bedri, A. A. Sultan, M. Alkhalaf, A. E. Al Moustafa, and S. Vranic, “Epstein-Barr virus (EBV) status in colorectal cancer: a mini review,” Hum Vaccin Immunother, vol. 15, no. 3, pp. 603-610, 2019, doi: 10.1080/21645515.2018.1543525.

[6] M. Vockerodt, L. F. Yap, C. Shannon-Lowe et al., “The Epstein-Barr virus and the pathogenesis of lymphoma,” J Pathol., vol. 235, no. 2, pp. 312-22, 2015, doi: 10.1002/path.4459.

[7] J. T. Schiller and D. R. Lowy, “An Introduction to Virus Infections and Human Cancer,” Recent Results Cancer Res., vol. 217, pp. 1-11, 2021, doi:10.1007/978-3-030-57362-1_1.

[8] J. F. M. Almeida, K. C. Peres, E. S. Teixeira, L. Teodoro, I. F. D. Bo, and L. S. Ward, “Epstein-Barr Virus and Thyroid Cancer,” Crit Rev Oncog., vol. 24, no. 4, pp. 369-377, 2019, doi: 10.1615/CritRevOncog.2019031618.

[9] C. Arias-Calvachi, R. Blanco, G. M. Calaf, and F. Aguayo, “Epstein-Barr Virus Association with Breast Cancer: Evidence and Perspectives,” Biology (Basel), vol. 11, no. 6, 2022, doi: 10.3390/biology11060799.

[10] L. S. Young, L. F. Yap, and P. G. Murray, “Epstein-Barr virus: more than 50 years old and still providing surprises,” Nat Rev Cancer, vol. 16, no. 12, pp. 789-802, 2016, doi: 10.1038/nrc.2016.92.

[11] M. A. Epstein, B. G. Achong, and Y. M. Barr, “Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma,” Lancet, vol. 1, no. 7335, pp. 702-703, 1964, doi:10.1016/s0140-6736(64)91524-7.

[12] K. W. Lo, K. F. To, and D. P. Huang, “Focus on nasopharyngeal carcinoma,” Cancer Cell, vol. 5, no. 5, pp. 423-428, 2004, doi:10.1016/s1535-6108(04)00119-9.

[13] S. W. Tsao, C. M. Tsang, and K. W. Lo, “Epstein-Barr virus infection and nasopharyngeal carcinoma,” Philos Trans R Soc Lond B Biol Sci., vol. 372, no. 1732, 2017, doi: 10.1098/rstb.2016.0270.

[14] S. Yang, S. Wu, J. Zhou, and X. Y. Chen, “Screening for nasopharyngeal cancer,” Cochrane Database Syst Rev., vol. 11, p. CD008423, 2015, doi: 10.1002/14651858.CD008423.pub2.

[15] L. S. Young and C. W. Dawson, “Epstein-Barr virus and nasopharyngeal carcinoma,” Chin J Cancer, vol. 33, no. 12, pp. 581-590, 2014, doi: 10.5732/cjc.014.10197.

[16] M. L. Gulley and W. Tang, “Laboratory assays for Epstein-Barr virus-related disease,” J Mol Diagn., vol. 10, no. 4, pp. 279-292, 2008, doi: 10.2353/jmoldx.2008.080023.

[17] N. K. Fanaian, C. Cohen, S. Waldrop, J. Wang, and B. M. Shehata, “Epstein-Barr virus (EBV)-encoded RNA: automated in-situ hybridization (ISH) compared with manual ISH and immunohistochemistry for detection of EBV in pediatric lymphoproliferative disorders,” Pediatr Dev Pathol., vol. 12, no. 3, pp. 195-199, 2019, doi: 10.2350/07-07-0316.1.

[18] M. L. Gulley “Molecular diagnosis of Epstein-Barr virus-related diseases,” J Mol Diagn., vol. 3, no. 1, pp. 1-10, 2011, doi:10.1016/S1525-1578(10)60642-3.

[19] M. L. Gulley, S. L. Glaser, F. E. Craig et al., “Guidelines for interpreting EBER in situ hybridization and LMP1 immunohistochemical tests for detecting Epstein-Barr virus in Hodgkin lymphoma,” Am J Clin Pathol., vol. 117, no. 2, pp. 259-267, 2002, doi: 10.1309/MMAU-0QYH-7BHA-W8C2.

[20] M. K. Smatti, D. W. Al-Sadeq, N. H. Ali, G. Pintus, H. Abou-Saleh, and G. K. Nasrallah, “Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update,” Front Oncol., vol. 8, p. 211, 2018, doi: 10.3389/fonc.2018.00211.

[21] S. H. Moon, K. H. Cho, C. G. Lee et al., “IMRT vs. 2D-radiotherapy or 3D-conformal radiotherapy of nasopharyngeal carcinoma : Survival outcome in a Korean multi-institutional retrospective study (KROG 11-06),” Strahlenther Onkol., vol. 192, no. 6, pp. 377-385, 2016, doi: 10.1007/s00066-016-0959-y.

[22] M. Al-Sarraf, M. LeBlanc, P. G. Giri et al., “Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099,” J Clin Oncol., vol. 16, no. 4, pp. 1310-1317, 1998, doi: 10.1200/JCO.1998.16.4.1310.

[23] B. Baujat, H. Audry, J. Bourhis et al., “Chemotherapy in locally advanced nasopharyngeal carcinoma: an individual patient data meta-analysis of eight randomized trials and 1753 patients,” Int J Radiat Oncol Biol Phys., vol. 64, no. 1, pp. 47-56, 2006, doi: 10.1016/j.ijrobp.2005.06.037.

[24] P. Blanchard, A. Lee, S. Marguet et al., “Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis,” Lancet Oncol., vol. 16, no. 6, pp. 645-455, 2015, doi: 10.1016/S1470-2045(15)70126-9.

[25] M. Gau, A. Karabajakian, T. Reverdy, E. M. Neidhardt, and J. Fayette, “Induction chemotherapy in head and neck cancers: Results and controversies,” Oral Oncol., vol. 95, pp. 164-169, 2019, doi: 10.1016/j.oraloncology.2019.06.015.

[26] E. P. Hui, B. B. Ma, S. F. Leung et al., “Randomized phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinoma,” J Clin Oncol., vol. 27, no. 2, pp. 242-249, 2009, doi: 10.1200/JCO.2008.18.1545.

[27] T. Tan, W. T. Lim, K. W. Fong et al., “Concurrent chemo-radiation with or without induction gemcitabine, Carboplatin, and Paclitaxel: a randomized, phase 2/3 trial in locally advanced nasopharyngeal carcinoma,” Int J Radiat Oncol Biol Phys., vol. 91, no. 5, pp. 952-960, 2015, doi: 10.1016/j.ijrobp.2015.01.002.

[28] Y. Sun, W. F. Li, N. Y. Chen et al., “Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial,” Lancet Oncol., vol. 17, no. 11, pp. 1509-1520, 2016, doi: 10.1016/S1470-2045(16)30410-7.

[29] Y. Zhang, L. Chen, G. Q. Hu et al., “Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma,” N Engl J Med., vol. 381, no. 12, pp. 1124-1135, 2019, doi: 10.1056/NEJMoa1905287.

[30] M. A. Hennessy and P. G. Morris, “Induction treatment prior to chemoradiotherapy in nasopharyngeal carcinoma: triplet or doublet chemotherapy?” Anticancer Drugs, vol. 31, no. 2, pp. 97-100, 2020, doi: 10.1097/CAD.0000000000000867.

[31] T. Hu, L. Fang, L. Shi, W. Wang, and Y. Huang “Survival benefit of induction chemotherapy in treatment for stage III or IV locally advanced nasopharyngeal carcinoma - An updated meta-analysis and systematic review,” Am J Otolaryngol., vol. 42, no. 5, p. 102973, 2021, doi: 10.1016/j.amjoto.2021.102973.

[32] Y. P. Chen, A. T. C. Chan, Q. T. Le, P. Blanchard, Y. Sun, and J. Ma, “Nasopharyngeal carcinoma,” Lancet, vol. 394, no. 10192, pp. 64-80, 2019, doi: 10.1016/S0140-6736(19)30956-0.

[33] S. C. M. Huang, S. W. Tsao, and C. M. Tsang, “Interplay of Viral Infection, Host Cell Factors and Tumor Microenvironment in the Pathogenesis of Nasopharyngeal Carcinoma,” Cancers (Basel), vol. 10, no. 4, 2018, doi: 10.3390/cancers10040106.

[34] Y. P. Chen, J. W. Lv, Y. P. Mao et al., “Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses,” Mol Cancer., vol. 20, no. 1, p. 14, 2021, doi: 10.1186/s12943-020-01292-5.

[35] T. Ono, K. Azuma, A. Kawahara et al., “Prognostic stratification of patients with nasopharyngeal carcinoma based on tumor immune microenvironment,” Head Neck, vol. 40, no. 9, pp. 2007-2019, 2018, doi: 10.1002/hed.25189.

[36] L. Zhang, K. D. MacIsaac, T. Zhou et al., “Genomic Analysis of Nasopharyngeal Carcinoma Reveals TME-Based Subtypes,” Mol Cancer Res., vol. 15, no. 12, pp. 1722-1732, 2017, doi: 10.1158/1541-7786.MCR-17-0134.

[37] F. Yu, Y. Lu, F. Petersson, D. Y. Wang, and K. S. Loh, “Presence of lytic Epstein-Barr virus infection in nasopharyngeal carcinoma,” Head Neck, vol. 40, no. 7, pp. 1515-1523, 2018, doi: 10.1002/hed.25131.

[38] G. S. Taylor, H. Jia, K. Harrington et al., “A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer,” Clin Cancer Res., vol. 20, no. 19, pp. 5009-5022, 2014, doi: 10.1158/1078-0432.CCR-14-1122-T.

[39] C. Hsu, S. H. Lee, S. Ejadi et al., “Safety and Antitumor Activity of Pembrolizumab in Patients With Programmed Death-Ligand 1-Positive Nasopharyngeal Carcinoma: Results of the KEYNOTE-028 Study,” J Clin Oncol., vol. 35, no. 36, pp. 4050-4056, 2017, doi: 10.1200/JCO.2017.73.3675.

[40] B. B. Y. Ma, W. T. Lim, B. C. Goh et al., “Antitumor Activity of Nivolumab in Recurrent and Metastatic Nasopharyngeal Carcinoma: An International, Multicenter Study of the Mayo Clinic Phase 2 Consortium (NCI-9742),” J Clin Oncol., vol. 36, no. 14, pp. 1412-1418, 2018, doi: 10.1200/JCO.2017.77.0388.

[41] W. Fang, Y. Yang, Y. Ma et al., “Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: results from two single-arm, phase 1 trials,” Lancet Oncol., vol. 19, no. 10, pp. 1338-1350, 2018, doi: 10.1016/S1470-2045(18)30495-9.

[42] T. J. Seng, J. S. Low, H. Li et al., “The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation,” Oncogene, vol. 26, no. 6, pp. 934-944, 2007, doi: 10.1038/sj.onc.1209839.

[43] W. Jiang, N. Liu, X. Z. Chen et al., “Genome-Wide Identification of a Methylation Gene Panel as a Prognostic Biomarker in Nasopharyngeal Carcinoma,” Mol Cancer Ther., vol. 14, no. 12, pp. 2864-2873, 2015, doi: 10.1158/1535-7163.MCT-15-0260.

[44] W. Wu, X. Chen, S. Yu, R. Wang, R. Zhao, and C. Du, “MicroRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN,” Mol Med Rep., vol. 17, no. 1, pp. 1305-1310, 2018, doi: 10.3892/mmr.2017.7931.

[45] K. Li, X. Zhu, L. Li et al., “Identification of non-invasive biomarkers for predicting the radiosensitivity of nasopharyngeal carcinoma from serum microRNAs,” Sci Rep., vol. 10, no. 1, p. 5161, 2020, doi: 10.1038/s41598-020-61958-4.

[46] Y. Zhang, Y. Zhao, L. Liu et al., “MicroRNA-19b Promotes Nasopharyngeal Carcinoma More Sensitive to Cisplatin by Suppressing KRAS,” Technol Cancer Res Treat., vol. 17, 2018, Art. no. 1533033818793652, doi: 10.1177/1533033818793652.

[47] Y. M. Lo, A. T. Chan, L. Y. Chan et al., “Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA,” Cancer Res., vol. 60, no. 24, pp. 6878-6881, 2000.

[48] J. C. Lin, W. Y. Wang, K. Y. Chen et al., “Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma,” N Engl J Med., vol. 350, no. 24, pp. 2461-2470, 2004, doi: 10.1056/NEJMoa032260.

[49] A. T. C. Chan, E. P. Hui, R. K. C. Ngan et al., “Analysis of Plasma Epstein-Barr Virus DNA in Nasopharyngeal Cancer After Chemoradiation to Identify High-Risk Patients for Adjuvant Chemotherapy: A Randomized Controlled Trial,” J Clin Oncol., 2018, Art. no. JCO2018777847, doi: 10.1200/JCO.2018.77.7847.




DOI: https://doi.org/10.34238/tnu-jst.6216

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved