THUẬT TOÁN XỬ LÝ ẢNH VÀ TƯƠNG QUAN CHÉO TRONG PHÂN TÍCH DÒNG CHẢY VÒI PHUN
Thông tin bài báo
Ngày nhận bài: 04/11/22                Ngày hoàn thiện: 30/11/22                Ngày đăng: 30/11/22Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994.
[2] C. D. Argyropoulos and N. C. Markatos, “Recent advances on the numerical modelling of turbulent flows,” Appl. Math. Model., vol. 39, no. 2, pp. 693–732, 2015, doi: 10.1016/j.apm.2014.07.001.
[3] W. Cheng and R. Samtaney, “A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows,” Comput. Fluids, vol. 92, pp. 82–92, 2014, doi: 10.1016/j.compfluid.2013.12.001.
[4] T. H. Tran, H. Q. Dinh, H. Q. Chu, V. Q. Duong, C. Pham, and V. M. Do, “Effect of boattail angle on near-wake flow and drag of axisymmetric models: a numerical approach,” J. Mech. Sci. Technol., vol. 35, no. 2, pp. 563–573, Feb. 2021, doi: 10.1007/s12206-021-0115-1.
[5] T. H. Tran, D. A. Le, T. M. Nguyen, C. T. Dao, and V. Q. Duong, “Comparison of Numerical and Experimental Methods in Determining Boundary Layer of Axisymmetric Model,” in International Conference on Advanced Mechanical Engineering, Automation and Sustainable Development, 2022, pp. 297–302.
[6] A. D. Le, B. M. Duc, T. V. Hoang, and H. T. Tran, “Modified Savonius Wind Turbine for Wind Energy Harvesting in Urban Environments,” J. Fluids Eng., vol. 144, no. 8, 2022, Art. no. 081501.
[7] A. D. Le and T. H. Tran, “Improvement of Mass Transfer Rate Modeling for Prediction of Cavitating Flow,” J. Appl. Fluid Mech., vol. 15, no. 2, pp. 551–561, 2022.
[8] A. D. Le, T. H. Phan, and T. H. Tran, “Assessment of a Homogeneous Model for Simulating a Cavitating Flow in Water Under a Wide Range of Temperatures,” J. Fluids Eng., vol. 143, no. 10, 2021, Art. no. 101204, doi: 10.1115/1.4051078.
[9] T. H. Tran, M. Anyoji, T. Nakashima, K. Shimizu, and A. D. Le, “Experimental Study of the Skin-Friction Topology Around the Ahmed Body in Cross-Wind Conditions,” J. Fluids Eng., vol. 144, no. 3, 2022, doi: 10.1115/1.4052418.
[10] R. J. Adrian and J. Westerweel, Particle image velocimetry, vol. 30. Cambridge University Press, 2011.
[11] T. H. Tran, “The Effect of Boattail Angles on the Near-Wake Structure of Axisymmetric Afterbody Models at Low-Speed Condition,” Int. J. Aerosp. Eng., vol. 2020, 2020, doi: 10.1155/2020/7580174.
[12] T. H. Tran and L. Chen, “Optical-Flow Algorithm for Near-Wake Analysis of Axisymmetric Blunt-Based Body at Low-Speed Conditions,” J. Fluids Eng., vol. 142, no. 11, pp. 1–10, 2020, doi: 10.1115/1.4048145.
[13] T. Liu, A. Merat, M. H. M. Makhmalbaf, C. Fajardo, and P. Merati, “Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images,” Exp. Fluids, vol. 56, no. 8, pp. 1–23, 2015.
[14] Z. Yang and M. Johnson, “Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method,” J. Vis., vol. 20, no. 3, pp. 625–638, 2017, doi: 10.1007/s12650-017-0417-7.
[15] T. Liu, D. M. Salazar, H. Fagehi, H. Ghazwani, J. Montefort, and P. Merati, “Hybrid Optical-Flow-Cross-Correlation Method for Particle Image Velocimetry,” J. Fluids Eng., vol. 142, no. 5, pp. 1–7, 2020, doi: 10.1115/1.4045572.
[16] T. H. Tran and L. Chen, “Wall shear-stress extraction by an optical flow algorithm with a sub-grid formulation,” Acta Mech. Sin. Xuebao, vol. 37, no. 1, pp. 65–79, 2021, doi: 10.1007/s10409-020-00994-9.
[17] I. Symposium and P. I. Velocimetry, “Spatio-temporal correlation-variational approach for robust optical flow estimation,” Image, Rochester, N.Y., September 2007, pp. 11–14.
[18] J. Venning, D. Lo Jacono, D. Burton, M. Thompson, and J. Sheridan, “The effect of aspect ratio on the wake of the Ahmed body,” Exp. Fluids, vol. 56, no. 6, 2015, doi: 10.1007/s00348-015-1996-5.
[19] E. J. Lee and S. J. Lee, “Drag reduction of a heavy vehicle using a modified boat tail with lower inclined air deflector,” J. Vis., vol. 20, no. 4, pp. 743–752, 2017, doi: 10.1007/s12650-017-0426-6.
[20] T. H. Tran, H. Q. Chu, and X. L. Trinh, “Investigation on unsteady behavior of near-wake flow of a blunt-base body by an optical-flow algorithm,” J. Sci. Tech., vol. 15, no. 05, pp. 48 - 59, 2020.
[21] B. K. Horn and B. G. Schunck, “Determining Optical Flow Berthold,” Tech. Appl. Image Underst., vol. 0281, pp. 319–331, 1981.
[22] C. Cassisa, S. Simoens, V. Prinet, and L. Shao, “Subgrid scale formulation of optical flow for the study of turbulent flow,” Exp. Fluids, vol. 51, no. 6, pp. 1739–1754, 2011, doi: 10.1007/s00348-011-1180-5.
[23] X. Chen, P. Zillé, L. Shao, and T. Corpetti, “Optical flow for incompressible turbulence motion estimation,” Exp. Fluids, vol. 56, no. 1, pp. 1–14, 2015, doi: 10.1007/s00348-014-1874-6.
[24] W. Thielicke and E. Stamhuis, “PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB,” J. open Res. Softw., vol. 2, no. 1, 2014, doi: 10.5334/jors.bl.
[25] M. Stanislas, K. Okamoto, C. J. Kähler, J. Westerweel, and F. Scarano, “Main results of the third international PIV challenge,” Exp. Fluids, vol. 45, no. 1, pp. 27–71, 2008.
[26]M. Khalid, L. Pénard, and E. Mémin, “Optical flow for image-based river velocity estimation,” Flow Meas. Instrum., vol. 65, pp. 110–121, 2019, doi: 10.1016/j. flowmeasinst.2018.11.009
DOI: https://doi.org/10.34238/tnu-jst.6875
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu