NÂNG CAO ĐẶC TÍNH NHẠY KHÍ Ở NHIỆT ĐỘ PHÒNG CỦA CẢM BIẾN KHÍ NH3 DỰA TRÊN VẬT LIỆU TỔ HỢP NANO CÁC BON VÀ HẠT NANO ZnO
Thông tin bài báo
Ngày nhận bài: 12/01/23                Ngày hoàn thiện: 27/02/23                Ngày đăng: 28/02/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] K. E. Wyer, D. B. Kelleghan, V. Blanes-Vidal, G. Schauberger, and T. P. Curran, "Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health," Journal of Environmental Management, vol. 323, 2022, Art. no. 116285.
[2] National Institute for Occupational Safety and Health, Centers for Disease Control, U.S Department of Health and Human Services, "Occupational Safety and Health Guideline for Ammonia," Occupational Safety and Health Guidelines, 1992, pp. 1–7.
[3] Do. Kwak, Y. Lei, and R. Maric, "Ammonia gas sensors: A comprehensive review," Talanta, vol. 204, pp. 713-730, 2019.
[4] Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, and Y. Fu, "Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature," Materials Horizons, vol. 6, pp. 470–506, 2019.
[5] K. G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, and D. Joshi, "Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review," Sensors and Actuators A: Physical, vol. 341, 2022, Art. no. 113578.
[6] Z. Wang, M. Bu, N. Hu, and L. Zhao, "An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge," Composites Part B: Engineering, vol. 248, 2023, Art. no. 110378.
[7] R. Malik, V. K. Tomer, Y. K. Mishra, and L. Lin, "Functional gas sensing nanomaterials: A panoramic view," Applied Physics Reviews, vol. 7, 2020, Art. no. 021301.
[8] N. L. W. Septiani, and B. Yuliarto, "Review—The Development of Gas Sensor Based on Carbon Nanotubes," Journal of The Electrochemical Society, vol. 163, pp. B97–B106, 2016.
[9] V. T. Duong, C. T. Nguyen, H. B. Luong, D. C. Nguyen, and H. L. Nguyen, "Ultralow-detection limit ammonia gas sensors at room temperature based on MWCNT/WO3 nanocomposite and effect of humidity," Solid State Sciences, vol. 113, 2021, Art. no. 106534.
[10] M. D. Fernández-Ramos, L. F. Capitán-Vallvey, L. M. Pastrana-Martínez, S. Morales-Torres, and F. J. Maldonado-Hódar, “Chemoresistive NH3 gas sensor at room temperature based on the carbon gel-TiO2 nanocomposites,” Sensors and Actuators B: Chemical, vol. 368, 2022, Art. no. 132103.
[11] S. X. Fan and W.Tang, “Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature,” Sensors and Actuators B: Chemical, vol. 362, 2022, Art. no. 131789.
[12] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of The American Chemical Society, vol. 80, 1958, Art. no.1339.
[13] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, "Chemical oxidation of multiwalled carbon nanotubes," Carbon, vol. 46, pp. 833–840, 2008.
[14] Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, and C. Peng, "Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes," Nanoscale Research Letters, vol. 9, pp. 1–12, 2014.
[15] N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, and L. Lin, "A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides," Microchimica Acta, vol. 185, 2018, Art. no. 213.
[16] Y. J. Kwon, A. Mirzaei, S. Y. Kang, M. S. Choi, J. H. Bang, S. S. Kim, and H. W. Kim, "Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs," Applied Surface Science, vol. 413, pp. 242–252, 2017.
[17] J. H. Lee, A. Katoch, S. W. Choi, J. H. Kim, H. W. Kim, and S. S. Kim, "Extraordinary Improvement of Gas-Sensing Performances in SnO2 Nanofibers Due to Creation of Local p – n Heterojunctions by Loading Reduced Graphene Oxide Nanosheets," ACS Applied Materials & Interfaces, vol. 7, pp. 3101–3109, 2015.
[18] M. Dai, L. Zhao, H. Gao, P. Sun, F. Liu, S. Zhang, K. Shimanoe, N. Yamazoe, and G. Lu, "Hierarchical Assembly of α-Fe2O3 Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors," ACS Applied Materials and Interfaces, vol. 9, pp. 8919–8928, 2017.
[19] P. G. Collins, "Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes," Science, vol. 287, pp. 1801–1804, 2000.
[20] H. Tai, Z. Yuan, W. Zheng, Z. Ye, C. Liu, and X. Du, “ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature,” Nanoscale Research Letters, vol. 11, no. 1, pp. 1-8, 2016.
[21] M. Morsy, I. S.Yahia, H. Y. Zahran, F. Meng, and M. Ibrahim, “Portable and Battery Operated Ammonia Gas Sensor Based on CNTs/rGO/ZnO Nanocomposite,” Journal of Electronic Materials, vol. 48, pp. 7328-7335, 2019.
DOI: https://doi.org/10.34238/tnu-jst.7227
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu