PHÁT HIỆN DEEPFAKE DỰA TRÊN HỌC SÂU
Thông tin bài báo
Ngày nhận bài: 13/09/23                Ngày hoàn thiện: 24/10/23                Ngày đăng: 25/10/23Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] L. Nataraj, T. M. Mohammed, B. S. Manjunath, S. Chandrasekaran, A. Flenner, J. H. Bappy, and A. K. Roy-Chowdhury, “Detecting GAN generated Fake Images using Co-occurrence Matrices,” Electronic Imaging, vol. 31, no. 5, pp. 532-1 - 532-7, 2019.
[2] S. Wang, O. Wang, R. Zhang, A. Owens, and A. Efros, "CNN-Generated Images Are Surprisingly Easy to Spot… for Now," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 8692-8701.
[3] C.-C. Hsu, C.-Y. Lee, and Y.-X. Zhuang, “Learning to Detect Fake Face Im-ages in the Wild,” IEEE International Symposium on Computer, Consumer and Control (IS3C), 2018, pp. 388-391.
[4] M. Mirza and S. Osindero, "Conditional Generative Adversarial Nets," 2018. [Online]. Available: https://arxiv.org/abs/1411.1784. [Accessed Sept. 12, 2022]
[5] A. O. J. Kwok and S. G. M. Koh, “Deepfake: a social construction of technology perspective,” Current Issues in Tourism, vol. 24, no.13, pp. 1798–1802, 2021.
[6] M. Westerlund, “The Emergence of Deepfake Technology: A Review,” Technology Innovation Management Review, vol. 9, no. 11, pp. 39–52, 2019.
[7] X. Yang, Y. Li, and S. Lyu, "Exposing deepfakes using inconsistent head poses," in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 8261-8265.
[8] P. Korshunov and S. Marcel, “DeepFakes: a New Threat to Face Recognition? Assessment and Detection,” 2018. [Online]. Available: http://export.arxiv.org/pdf/1812.08685. [Accessed Dec. 14, 2022].
[9] F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face recognition and clustering," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 815-823.
[10] A. J. O'Toole, P. J. Phillips, F. Jiang, J. Ayyad, N. Penard, and H. Abdi, "Face Recognition Algorithms Surpass Humans Matching Faces Over Changes in Illumination," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1642-1646, 2007.
[11] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” 3rd International Conference on Learning Representations (ICLR 2015), Computational and Biological Learning Society 2015, pp. 1–14.
[12] T. Baltrušaitis, P. Robinson, and L.-P. Morency, "Openface: an open source facial behavior analysis toolkit," in 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016, pp. 1-10.
[13] OpenCV: DNN-based Face Detection And Recognition, (n.d.). [Online]. Available: https://docs.opencv.org/4.x/d0/dd4/tutorial_dnn_face.html. [Accessed August 31, 2023].
[14] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251-1258.
[15] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778.
[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” In Proceedings of The 32nd International Conference on Machine Learning, 2015, pp. 448–456.
[16] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 2261-2269.
[17] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information Processing Management, vol. 45, no. 4, pp. 427–437, 2009.
DOI: https://doi.org/10.34238/tnu-jst.8754
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu