XỬ LÝ CHẤT MÀU AXIT ORANGE 7 TRONG NƯỚC THẢI BẰNG THIẾT BỊ SINH HỌC – MÀNG (MBR): ẢNH HƯỞNG CỦA CHẾ ĐỘ SỤC KHÍ VÀ THỜI GIAN LƯU THỦY LỰC | Dương | TNU Journal of Science and Technology

XỬ LÝ CHẤT MÀU AXIT ORANGE 7 TRONG NƯỚC THẢI BẰNG THIẾT BỊ SINH HỌC – MÀNG (MBR): ẢNH HƯỞNG CỦA CHẾ ĐỘ SỤC KHÍ VÀ THỜI GIAN LƯU THỦY LỰC

Thông tin bài báo

Ngày nhận bài: 29/09/23                Ngày hoàn thiện: 03/11/23                Ngày đăng: 03/11/23

Các tác giả

1. Lưu Tuấn Dương, Trường Đại học Khoa học - ĐH Thái Nguyên
2. Lê Thanh Sơn Email to author, Viện Công nghệ môi trường - Viện Hàn lâm KHCN Việt Nam
3. Đặng Thị Thơm, Viện Công nghệ môi trường - Viện Hàn lâm KHCN Việt Nam,
4. Hoàng Mạnh Trung, Tổng công ty Công nghệ - Viễn thông Toàn cầu,
5. Đỗ Xuân Trường, Đại học Bách khoa Hà Nội
6. Đào Phương Uyên, Trường Đại học Khoa học và Công nghệ Hồng Kông
7. Nguyễn Anh Dũng, Vụ Khoa học và Công nghệ, Bộ Tài nguyên và Môi trường
8. Nguyễn Quang Phúc, Học viện Khoa học và Công nghệ
9. Lê Cao Khải, Trường Đại học Sư phạm Hà Nội 2

Tóm tắt


Bể sinh học - màng kiểu nhúng ngập (MBR) thể tích 45 L sử dụng màng vi lọc sợi rỗng 0,3 µm được nghiên cứu để xử lý COD và chất màu axit orange 7 (AO7) của nước thải đã qua tiền xử lý bằng quá trình ozon hóa. Kết quả thu được cho thấy thời gian sục khí/ngừng sục và thời gian lưu thủy lực ảnh hưởng trực tiếp đến hiệu quả xử lý COD và chất màu AO7. Khi tăng thời gian sục khí, hiệu quả xử COD tăng trong khi hiệu quả xử lý AO7 lại giảm; khi tăng thời gian lưu thủy lực từ 12h lên 18h, hiệu quả xử lý COD và AO7 đều tăng nhưng đến 24h, hiệu suất xử lý COD và AO7 hầu như không đổi. Do đó thời gian sục khí/ngừng sục 60/60 phút, thời gian lưu thủy lực 18h là các điều kiện vận hành tối ưu của hệ MBR quy mô phòng thí nghiệm này, khi đó hiệu suất xử lý COD và chất màu AO7 lần lượt đạt 94,7% và 83,6%.

Từ khóa


Nước thải; Chất màu; Xử lý thứ cấp; Axit orange 7; MBR

Toàn văn:

PDF

Tài liệu tham khảo


[1] J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, and E. Drioli, “Remediation of textile effluents by membrane based treatment techniques: A state of the art review,” Journal of Environmental Management, vol. 147, pp. 55–72, 2015.

[2] A. K. Verma, R. R. Dash, and P. Bhunia, “A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters,” Journal of Environmental Management, vol. 93, pp. 154-168, 2012.

[3] CPCB, Advanced Methods for Treatment of Textile Industry Effluents, Central Pollution Control Board, Ministry of Environment & Forests, New Delhi, 2007.

[4] F. Duarte, V. Morais, F. J. Maldonado-Hodar, and L. M. Madeira, “Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst,” Chemical Engineering Journal, vol. 232, pp. 34-41, 2013.

[5] Q. Wang, Z. Luan, N. Wei, J. Li, and C. Liu, “The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution,” Journal of Hazardous Materials, vol. 170, pp. 690-698, 2009.

[6] N. M. H. ElDefrawy and H. F. Shaalan, “Integrated membrane solutions for green textile industries,” Desalination, vol. 204, pp. 241-254, 2007.

[7] I. Arslan-Alaton, B. H. Gursoy, and J. E. Schmidt, “Advanced oxidation of acid and reactive dyes: effect of Fenton treatment on aerobic, anoxic and anaerobic processes,” Dyes Pigments, vol. 78, pp. 117-130, 2008.

[8] R. Ennouri, M. Panizza, T. Mhiri, and S. C. Elaoud, “Electrochemical behaviour of acid orange 7 by cyclic voltammetry in different solvents,” Portugaliae Electrochimica Acta, vol. 35, no. 5, pp. 269–277, 2017.

[9] B. Naraghi, F. Zabihi, M. R. Narooie, M. Saeidi, and H. Biglari, “Removal of acid orange 7 dye from aqueous solutions by adsorption onto Kenya tea pulps; granulated shape,” Electron Physician, vol. 9, no. 5, pp. 4312–4321, 2017.

[10] V. K. Gupta, A. Mittal, V. Gajbe, and J. Mittal, “Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-Oiled Soya,” Industrial & Engineering Chemistry Research, vol. 45, no. 4, pp. 1446–1453, 2006.

[11] D. Sannino, N. Morante, O. Sacco, A. Mancuso, L. De Guglielmo, G. Di Capua, N. Femia, and V. Vaiano, “Visible light-driven degradation of Acid Orange 7 by light modulation techniques,” Photochemical & Photobiological Sciences, vol. 22, pp. 185–193, 2023.

[12] C. K. Lim, H. H. Bay, A. Aris, Z. Abdul Majid, and Z. Ibrahim, “Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach,” Environmental Science and Pollution Research International, vol. 20, no. 7, pp. 5056-5066, 2013.

[13] M. Yan, H. Xie, Q. Zhang, H. Qu, J. Shen, and J. Kong, “Hemin Based Biomimetic Oxidative Degradation of Acid Orange 7,” Journal of Materials Science and Chemical Engineering, vol.4, no. 6, pp. 26 – 34, 2016.

[14] Y. Lau , Y. S. Wong, T. T. Teng, N. Morad, M. Rafatullah, and S. Ong, “Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil,” Chemical Engineering Journal, vol. 246, pp. 383-390, 2014.

[15] A. C. Gomes, I. C. Gonçalves, and M. N. de Pinho, “The role of adsorption on nanofiltration of azo dyes,” Journal of Membrane Science, vol. 255, no. 1–2, pp. 157-165, 2005.

[16] J. Hoigne, “Inter-calibration of OH radical sources and water quality parameters,” Water Science and Technology, vol. 35, no. 4, pp. 1-8, 1997.

[17] J. Lobos, C. Wisniewski, M. Heran, and A. Grasmick, “Membrane bioreactor performances: comparison between continuous and sequencing systems,” Desalination, vol. 199, pp. 319 - 321, 2006.

[18] F. Feng, Z. Xu, X. Li, W. You, and Y. Zhen, “Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process,” Journal of Environmental Sciences, vol. 22, no. 11, pp. 1657 – 1665, 2010.

[19] L. Rieger, I. Takács, and H. Siegrist, “Improving Nutrient Removal While Reducing Energy Use at Three Swiss WWTPs Using Advanced Control,” Water Environment Research, vol. 84, no. 2, pp. 170 - 188, 2012

[20] O.T. Iorhemen, R.A. Hamza, and J.H. Tay, “Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling,” Membranes (Basel), vol. 6, no. 2, pp. 33, 2016.

[21] A. Yurtsever, E. Sahinkaya, Ö. Aktaş, D. Uçar, Ö. Çınar, and Z. Wang, “Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater,” Bioresource Technology, vol. 192, pp. 564-573, 2015.

[22] M. Isik, “Efficiency of simulated textile wastewater decolorization process based on the methanogenic activity of upflow anaerobic sludge blanket reactor in salt inhibition condition,” Enzyme and Microbial Technology, vol. 35, pp. 399–404, 2004.

[23]D. Mendez–Paz, F. Omil, and J. M. Lema, “Anaerobic treatment of azo dye Acid Orange 7 under fedbatch and continuous conditions,” Water Research, vol. 39, no. 7, pp. 771-778, 2005.

[24] E. Razo–Flores, B. A. Donlon, J. A. Field, and G. Lettinga, “Biodegradability of N–substituted aromatics and alkylphenols under methanogenic conditions using granuler sludge,” Water Science Technology, vol. 33, pp. 47-57, 1996.

[25] F. P. Van der Zee and S. Villaverde, “Combined anaerobic–aerobic treatment of azo dyes–A short review of bioreactor studies,” Water Research, vol. 39, pp.1425-1440, 2005.

[26] A. Gottlieb, C. Shaw, A. Smith, A. Wheatley, and S. Forsythe, “The toxicity of textile reactive azo dyes after hydrolysis and decolorization,” Journal of Biotechnology, vol. 101, no. 1, pp. 49-56, 2003.

[27] N. C. G. Tan, A. Borger, P. Slender, A. V. Svitelskaya, G. Lettinga, and J. A. Field, “Degradation of azo dye Mordant Yellow 10 in a sequential anaerobic and bioaugmented aerobic reactor,” Water Science Technology, vol. 42, no. 3, pp. 337-344, 2000.

[28] M. Isýk and D. T. Sponza, “Simüle Tekstil Atýksuyunun Anaerobik/Aerobik Arýtýmý,” Ekoloji, vol. 14, no. 1, pp. 1-8, 2004.

[29] Y. Wang, X. Huang, and Q. P. Yuan, “Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor,” Process Biochemistry, vol. 40, no. 5, pp. 1733–1739, 2005.

[30] J. Y. Tian, H. Liang, X. Li, S. J. You, S. Tian, and G. B. Li, “Membrane coagulation bioreactor (MCBR) for drinking water treatment,” Water Research, vol. 42, no. 14, pp. 3910–3920, 2008.

[31] A. H. Konsowa, H. B. Abd El-Rahman, and M. A. Moustaf, “Removal of azo dye acid orange 7 using aerobic membrane bioreactor,” Alexandria Engineering Journal, vol. 50, pp. 117–125, 2011.

[32] M. M. Zhang, C. Li, M. M. Benjamin, and Y. J. Chang, “Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment,” Environmental Science & Technology, vol. 37, no. 8, pp. 1663–1669, 2003.

[33] E. Drioli, G. Profio, and E. Curcio, “Hybrid membrane operations in water desalination and industrial processes rationalization,” Water Science & Technology, vol. 51, no. 6-7, pp. 293-304, 2005.

[34] M. Brik, P. Schoeberl, B. Chamam, R. Braun, and W. Fuchs, “Advanced treatment of textile wastewater towards reuse using a membrane bioreactor,” Process Biochemistry, vol. 41, pp. 1751–1757, 2006.

[35] R. Krull and E. Doepkens, “Recycling of dyehouse effluents by biological and chemical treatment,” Water Science & Technology, vol. 49, no. 4, pp. 311–317, 2004.

[36] C. Visvanathan, R. B. Aim, and K. Parameshwaran, “Membrane separation bioreactor for wastewater treatment,” Critical Reviews in Environmental Science and Technology, vol. 30, no. 1, pp. 1–48, 2000.

[37] X. Zhang and J. Liu, “Dyeing and printing wastewater treatment in a MBR with a gravity drain,” Desalination, vol. 190, pp. 277–286, 2006.




DOI: https://doi.org/10.34238/tnu-jst.8863

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved