NGHIÊN CỨU TỔNG QUAN VỀ CÁC PHƯƠNG PHÁP ĐIỀU KHIỂN ROBOT TRONG ĐIỀU HƯỚNG VÀ TRÁNH CHƯỚNG NGẠI VẬT | Long | TNU Journal of Science and Technology

NGHIÊN CỨU TỔNG QUAN VỀ CÁC PHƯƠNG PHÁP ĐIỀU KHIỂN ROBOT TRONG ĐIỀU HƯỚNG VÀ TRÁNH CHƯỚNG NGẠI VẬT

Thông tin bài báo

Ngày nhận bài: 12/10/23                Ngày hoàn thiện: 28/11/23                Ngày đăng: 28/11/23

Các tác giả

1. Đinh Quý Long, Trường Đại học Công nghệ Thông tin và Truyền thông – ĐH Thái Nguyên
2. Nguyễn Hữu Công, Đại học Thái Nguyên
3. Dương Phú Tuấn, Viện Khoa học và Công nghệ Quân sự
4. Nguyễn Quang Vịnh, Viện Khoa học và Công nghệ Quân sự
5. Nguyễn Tuấn Minh Email to author, Đại học Thái Nguyên

Tóm tắt


Robot di động tự hành là một tác nhân có khả năng điều hướng và di chuyển một cách thông minh thông qua các cảm biến và bộ điều khiển truyền động. Robot di động tự hành đang ngày càng được sử dụng nhiều hơn trong các lĩnh vực bao gồm kinh doanh, khoa học, giao thông vận tải, quốc phòng an ninh và các lĩnh vực xã hội khác. Nghiên cứu này tập trung nghiên cứu, đánh giá về các kỹ thuật điều khiển khác nhau. Bài báo đã phân loại rất rõ các kỹ thuật điều hướng cho Robot di động như thuật toán xác định, thuật toán không xác định, thuật toán tiến hóa, thuật toán di truyền, điều khiển thích nghi bền vững v.v, áp dụng để điều hướng robot di động và tránh chướng ngại vật trong các môi trường khác nhau. Phương pháp nghiên cứu được sử dụng là tổng hợp, phân tích và đánh giá thông tin để rút ra được những kết luận và nhận xét hữu ích. Nghiên cứu giúp định  hướng cho các nhà nghiên cứu mới bắt đầu trong lĩnh vực điều hướng robot, giúp họ có một cái nhìn tổng quan về điều hướng cho robot di động tự hành. Các nhận xét và đánh giá rút ra từ nghiên cứu là tiền đề để cải tiến các thuật toán đã có, phát triển các thuật toán tối ưu hơn nữa cho việc điều hướng và tránh chướng ngại vật của robot di động tự hành.

Từ khóa


Robot di động; Điều khiển; Tự hành; Điều hướng; Tránh vật cản

Toàn văn:

PDF

Tài liệu tham khảo


[1] M. T. Nguyen, H. M. La, and K. A. Teague, "Collaborative and Compressed Mobile Sensing for Data Collection in Distributed Robotic Networks," in IEEE Transactions on Control of Network Systems, vol. 5, no. 4, pp. 1729-1740, Dec. 2018, doi: 10.1109/TCNS.2017.2754364.

[2] M. B. Alatise and G. P. Hancke, "A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods," in IEEE Access, vol. 8, pp. 39830-39846, 2020, doi: 10.1109/ACCESS.2020.2975643.

[3] M. T. Nguyen and H. R. Boveiri, "Energy-efficient sensing in robotic networks," Elsevier Measurement, vol. 158, 2020, Art. no. 107708.

[4] Q. A. Phung, D. C. Tran, T. Tran, and M. K. A. A. Khan, "Design and Development of an Obstacle Avoidance Mobile-controlled Robot," 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, 2019, pp. 90-94, doi: 10.1109/SCORED.2019.8896296.

[5] H. T. Tran et al., "Extended Kalman Filter (EKF) Based Localization Algorithms for Mobile Robots Utilizing Vision and Odometry," 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 2022, pp. 91-96, doi: 10.1109/MELECON53508.2022.9843066.

[6] M. T. Nguyen and K. A. Teague, "Random sampling in collaborative and distributed mobile sensor networks utilizing compressive sensing for scalar field mapping," 2015 10th System of Systems Engineering Conference (SoSE), San Antonio, TX, USA, 2015, pp. 1-6, doi: 10.1109/SYSOSE.2015.7151962.

[7] K. Zhu and T. Zhang, "Deep reinforcement learning based mobile robot navigation: A review," in Tsinghua Science and Technology, vol. 26, no. 5, pp. 674-691, Oct. 2021, doi: 10.26599/TST.2021.9010012.

[8] J. Iqbal, R. Xu, S. Sun, and C. Li, "Simulation of an autonomous mobile robot for LiDAR-based in-field phenotyping and navigation," Robotics, vol. 9, no. 2, 2020, Art. no. 46.

[9] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh, "Mobile Robot Path Planning in Dynamic Environment Using Voronoi Diagram and Computation Geometry Technique," IEEE Access, vol. 7, pp. 86026-86040, 2019, doi: 10.1109/ACCESS.2019.2925623.

[10] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, "Mobile robot path planning using membrane evolutionary artificial potential field," Applied Soft Computing, vol. 77, pp. 236-251, 2019.

[11] A. Alyasin, E. I. Abbas, and S. D. Hasan, "An Efficient Optimal Path Finding for Mobile Robot Based on Dijkstra Method," 2019 4th Scientific International Conference Najaf (SICN), Al-Najef, Iraq, 2019, pp. 11-14, doi: 10.1109/SICN47020.2019.9019345.

[12] H. Do, H. Nguyen, C. Nguyen, M. Nguyen, and M. Nguyen, "Formation control of multiple unmanned vehicles based on graph theory: A Comprehensive Review," EAI Endorsed Transactions on Mobile Communications and Applications, vol. 7, no. 3, 2022, doi: 10.4108/eetmca.v7i3.2416.

[13] J. C. Mohanta and A. Keshari, "A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation," Applied Soft Computing, vol. 79, pp. 391-409, 2019.

[14] N. H. Singh and K. Thongam, "Neural network-based approaches for mobile robot navigation in static and moving obstacles environments," Intelligent Service Robotics, vol. 12, no. 1, pp. 55-67, 2019.

[15] P. Pei and Y. N. Petrenko, "Mobile robot automatic navigation control algorithm based on fuzzy neural network in industrial Internet of things environment," Computer Science and Education, vol. 1, pp. 59-67, 2020.

[16] S. Sendari, A. N. Afandi, I. A. E. Zaeni, Y. D. Mahandi, K. Hirasawa, and H.-I. Lin, "Exploration of genetic network programming with two-stage reinforcement learning for mobile robot," TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 17, no. 3, pp. 1447-1454, 2019.

[17] A. Masaracchia, D. B. Da Costa, T. Q. Duong, M. -N. Nguyen, and M. T. Nguyen, "A PSO-Based Approach for User-Pairing Schemes in NOMA Systems: Theory and Applications," IEEE Access, vol. 7, pp. 90550-90564, 2019, doi: 10.1109/ACCESS.2019.2926641.

[18] F. H. Ajeil, I. K. Ibraheem, A. T. Azar, and A. J. Humaidi, "Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments," Sensors, vol. 20, no. 7, 2020, Art. no. 1880.

[19] A. K. Kashyap, D. R. Parhi, and S. Kumar, "Dynamic stabilization of NAO humanoid robot based on whole-body control with simulated annealing," International Journal of Humanoid Robotics, vol. 17, no. 03, 2020, Art. no. 2050014.

[20] N. B. Hui, V. Mahendar, and D. K. Pratihar, "Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches," Fuzzy Sets and systems, vol. 157, no. 16, pp. 2171-2204, 2006.

[21] L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning—I," Information sciences, vol. 8, no. 3, pp. 199-249, 1975.

[22] D. L. T. Tran, H. T. Do, H. T. Tran, T. Hoang, and M. T. Nguyen, "A Design and Implement of Fuzzy Controller for Taking-off and Landing for Unmanned Aerial Vehicles," in Proceedings of the International Conference on Engineering Research and Applications, ICERA 2022, Cham: Springer International Publishing, 2022, pp. 13-22.

[23] H. T. Tran, T. C. Vo, Q. N. A. Nguyen, Q. N. Pham, D. M. Ha, T. Q. Le, T. K. Nguyen, D. L. T. Tran, H. T. Do, and M. T. Nguyen, "A novel design of a smart interactive guiding robot for busy airports," International Journal on Smart Sensing and Intelligent Systems, vol. 15, no. 1, 2022.

[24] Q. Liu, Y.-G. Lu, and C.-X. Xie, "Optimal genetic fuzzy obstacle avoidance controller of autonomous mobile robot based on ultrasonic sensors," In 2006 IEEE international conference on robotics and biomimetics, 2006, pp. 125-129.

[25] M. Algabri, H. Mathkour, H. Ramdane, and M. Alsulaiman, "Comparative study of soft computing techniques for mobile robot navigation in an unknown environment," Computers in Human Behavior, vol. 50, pp. 42-56, 2015.

[26] M. Faisal, R. Hedjar, M. A. Sulaiman, and K. Al-Mutib, "Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment," International Journal of Advanced Robotic Systems, vol. 10, no. 1, 2013, Art. no. 37.

[27] H. Xiao, L. Liao, and F. Zhou, "Mobile robot path planning based on Q-ANN," in 2007 IEEE International Conference on Automation and Logistics, IEEE, 2007, pp. 2650-2654.

[28] C. T. Vo, N. A. Q. Nguyen, L. T. D. Tran, T. H. Tran, and M. T. Nguyen, "Fusion of inertial and magnetic sensors for autonomous vehicle navigation and freight in distinctive environment," in Proceedings of the International Conference on Engineering Research and Applications, ICERA 2021, Cham: Springer International Publishing, 2022, pp. 431-439.

[29] S. X. Yang, T. Hu, X. Yuan, P. X. Liu, and M. Meng, "A neural network based torque controller for collision-free navigation of mobile robots," In 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 1, pp. 13-18, 2003.

[30] A. Zhu, and S. X. Yang, "Neurofuzzy-based approach to mobile robot navigation in unknown environments," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 4, pp. 610-621, 2007.

[31] S. U. Deshpande, and S. S. Bhosale, "Adaptive neuro-fuzzy inference system based robotic navigation," In 2013 IEEE International Conference on Computational Intelligence and Computing Research, 2013, pp. 1-4.

[32] T. Y. Vu, V. H. Bui, and T. V. Phung, “Design of adaptive robust controller based on neural networks control for industrial robot manipulator,” The University of Danang - Journal of Science and Technology, vol. 18, no. 11, pp. 21-26, 2020.

[33] T. S. Li, S. C. Tong, and G. Feng, “A novel robust adaptive fuzzy tracking control for a class of nonlinear MIMO systems,” EEE Trans. Fuzzy syst, vol.18, no.1, pp.150-160, 2010.

[34] C. W. Chung and Y. T. Chang, “Backtepping control of multi -input nonlinear systems,” IET Control Theory and Applications, vol.7, no. 14, pp. 1773-1779, 2013.

[35] N. Kubota, T. Morioka, F. Kojima, and T. Fukuda, "Learning of mobile robots using perception-based genetic algorithm," Measurement, vol. 29, no. 3, pp. 237-248, 2001.

[36] H. Martınez-Alfaro, and S. Gomez-Garcıa, "Mobile robot path planning and tracking using simulated annealing and fuzzy logic control," Expert Systems with Applications, vol. 15, no. 3-4, pp. 421-429, 1998.

[37] M. Gao and J. Tian, "Path planning for mobile robot based on improved simulated annealing artificial neural network," in Third International Conference on Natural Computation (ICNC 2007), vol. 3, pp. 8-12, 2007.

[38] N. A. Shiltagh and L. D. Jalal, "Optimal path planning for intelligent mobile robot navigation using modified particle swarm optimization," International Journal of Engineering and Advanced Technology, vol. 2, no. 4, pp. 260-267, 2013.

[39] X. Fan, X. Luo, S. Yi, S. Yang, and H. Zhang, "Optimal path planning for mobile robots based on intensified ant colony optimization algorithm," In Proceedings of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, vol. 1, pp. 131-136, 2003.

[40] M. Brand and X.-H. Yu, "Autonomous robot path optimization using firefly algorithm," In 2013 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1028-1032, 2013.




DOI: https://doi.org/10.34238/tnu-jst.8978

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved