PHÂN LỚP NAIVE BAYES ĐẢM BẢO TÍNH RIÊNG TƯ CHO MÔ HÌNH DỮ LIỆU PHÂN TÁN NGANG
Thông tin bài báo
Ngày nhận bài: 12/10/23                Ngày hoàn thiện: 06/11/23                Ngày đăng: 06/11/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Aggregation for Privacy-Preserving Machine Learning,” in CCS’17, ACM, 2017, pp. 1175–1191, doi: 10.1145/3133956.3133982.
[2] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure, privacy-preserving and federated machine learning in medical imaging,” Nat. Mach. Intell., vol. 2, no. 6, pp. 305–311, Jun. 2020, doi: 10.1038/s42256-020-0186-1.
[3] X. Zhou, K. Xu, N. Wang, J. Jiao, N. Dong, M. Han, and H. Xu, “A Secure and Privacy-Preserving Machine Learning Model Sharing Scheme for Edge-Enabled IoT,” IEEE Access, vol. 9, pp. 17256–17265, 2021, doi: 10.1109/ACCESS.2021.3051945.
[4] E. Zorarpacı and S. A. Özel, “Privacy preserving classification over differentially private data,” WIREs Data Min. Knowl. Discov., vol. 11, no. 3, pp. 1–20, May 2021, doi: 10.1002/widm.1399.
[5] O. Goldreich, “Foundations of Cryptography,” in volume II, Basic Applications, Cambridge University Press, 1998, p. 108.
[6] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Found. Trends Theor. Comput. Sci., vol. 9, pp. 211–407, 2014.
[7] M. Kantarcioglu, J. Vaidya, and C. Clifton, “Privacy Preserving Naive Bayes Classifier for Horizontally Partitioned Data,” IEEE ICDM Workshop Priv. Preserv. Data Min., 2003, pp. 3–9.
[8] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools for Privacy Preserving Distributed Data Mining,” ACM SIGKDD Explor. Newsl., vol. 4, no. 2, pp. 28–34, 2002, doi: 10.1145/772862.772867.
[9] B. Schneier, Applied Cryptography, 2nd ed. John Wiley & Sons, 1996.
[10] Z. Yang, S. Zhong, and R. N. Wright, “Privacy-Preserving Classification of Customer Data without Loss of Accuracy,” in Proceedings of the 2005 SIAM International Conference on Data Mining, SIAM, 2005, pp. 92–102, doi: 10.1137/1.9781611972757.9.
[11] M. Huai, L. Huang, W. Yang, L. Li, and M. Qi, “Privacy-preserving Naive Bayes classification,” in International conference on knowledge science, engineering and management, Springer, Cham, 2015, pp. 627–638, doi: 10.1007/978-3-319-25159-2_57.
[12] P. Li, T. Li, H. Ye, J. Li, X. Chen, and Y. Xiang, “Privacy-preserving machine learning with multiple data providers,” Future Gener. Comput. Syst., vol. 87, pp. 341–350, Oct. 2018, doi: 10.1016/j.future.2018.04.076.
[13] T. Li, J. Li, Z. Liu, P. Li, and C. Jia, “Differentially private Naive Bayes learning over multiple data sources,” Inf. Sci., vol. 444, pp. 89–104, May 2018, doi: 10.1016/j.ins.2018.02.056.
[14] V. C. Nguyen, “A general secure sum protocol,” J. Sci. Tech., vol. 11, no. 1, Jun. 2022, doi: 10.56651/lqdtu.jst.v11.n01.362.ict.
[15] Kaggle, “SMS Spam Collection Dataset,” 2017. [Online]. Available: https://www.kaggle.com/uciml/ sms-spam-collection-dataset. [Accessed Jun. 13, 2022].
[16] PyCryptodome, “Welcome to PyCryptodome’s documentation — PyCryptodome 3.15.0 documentation,” 2021. [Online]. Available: https://pycryptodome.readthedocs.io/en/latest/index.html. [Accessed Jul. 10, 2022].
DOI: https://doi.org/10.34238/tnu-jst.8980
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu