ỨNG DỤNG ĐỒ THỊ TRI THỨC MỜ TRONG HỖ TRỢ CHẨN ĐOÁN CHO BỆNH NHÂN BỊ ĐÁI THÁO ĐƯỜNG
Thông tin bài báo
Ngày nhận bài: 02/11/23                Ngày hoàn thiện: 29/11/23                Ngày đăng: 29/11/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] International Diabetes Federation (IDF), “The IDF Diabetes Atlas 10th Edition,” 2021.
[2] American Diabetes Association, “Economic Costs of Diabetes in the U.S. in 2017,” 2018, pp. 917-928.
[3] B. N. Nguyen, L. Z. Lu, and A. Waqas, “Diabetes: What Challenges Lie Ahead for Vietnam?” Ann. Glob. Health, vol. 86, no. 1, pp. 1-9, Jan 2, 2020.
[4] M. F. Ijaz, M. Attique, and Y. Son, “Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods,” Sensors, vol. 20, no. 10, 2020, Art. no. 2809, doi: 10.3390/s20102809.
[5] P. N. Srinivasu, J. G. SivaSai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM,” Sensors, vol. 21, 2021, Art. no. 2852, doi: 10.3390/s21082852.
[6] M. Mandal, P.K. Singh, M.F. Ijaz, J. Shafi, and R. Sarkar, “A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification,” Sensors, vol. 21, no. 16, 2021, Art. no. 5571, doi: 10.3390/s21165571.
[7] M. F. Ijaz, G. Alfian, M. Syafrudin, and J. Rhee, “Hybrid Prediction Model for Type 2 Diabetes and Hypertension Using DBSCAN Based Outlier Detection, Synthetic Minority Over Sampling Technique (SMOTE), and Random Forest,” Appl. Sci., vol. 8, 2018, Art. no. 1325, doi: 10.3390/app8081325.
[8] O. Biran and C. Cotton, “Explanation and Justification in Machine Learning: A Survey,” IJCAI-17, 2017, pp. 8–13.
[9] L.A. Zadeh, Advances in Fuzzy Systems—Applications and Theory, Word Scientific Publisher: Singapore, 1996, pp. 394–432.
[10] F. Mehmanpazir and S. Asadi, “Development of an evolutionary fuzzy expert system for estimating future behavior of stock price,” J. Ind. Eng. Int., vol. 13, pp. 29–46, 2017.
[11] F. Mansourypoor and S. Asadi, “Development of a Reinforcement Learning-based Evolutionary Fuzzy Rule-Based System for diabetes diagnosis,” Comput. Biol. Med., vol. 91, pp. 337–352, 2017.
[12] S. Guillaume and B. Charnomordic, “Learning interpretable fuzzy inference systems with FisPro,” Inf. Sci., vol. 181, pp. 4409–4427, 2011.
[13] P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti, “Knowledge graphs: New directions for knowledge representation on the semantic web (dagstuhl seminar 18371),” Dagstuhl Reports, vol. 8, no. 9. pp. 29-111, Dagstuhl-Leibniz Castle Center for Computer Science, 2019.
[14] T. H. L. Luong, M. T. Tran, T. N. Tran, H. S. Le, L. G. Nguyen, T. N. N. Vo, and V. H. Pham, “A new complex fuzzy inference system with fuzzy knowledge graph and extensions in decision making,” IEEE Access, vol. 8, pp. 164 899– 164 921, 2020.
[15] L. S. Riza, C. Bergmeir, F. Herrera, and J. M. Benıtez, “frbs: Fuzzy Rule-Based Systems for Classification and Regression in R,” Journal of Statistical Software, vol. 65, no. 6, pp. 1–30, 2015.
[16] K. L. Cu, V. H. Pham, M. T. Tran, T. H. L. Luong, M. C. Pham, and H. S. Le, “A novel fuzzy knowledge graph pairs approach in decision making,” Multimedia Tools and Applications, vol. 81, no. 18, pp. 26505-26534, 2022.
DOI: https://doi.org/10.34238/tnu-jst.9132
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu