MỘT PHƯƠNG PHÁP ĐỀ XUẤT KHỬ NHIỄU MUỐI TIÊU TRONG XỬ LÝ ẢNH
Thông tin bài báo
Ngày nhận bài: 02/11/23                Ngày hoàn thiện: 07/12/23                Ngày đăng: 07/12/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] B. Goyal, A. Dogra, S. Agrawal, B. S. Sohi, and A. Sharma, “Image denoising review: From classical to state-of-the-art approaches,” Inf. Fusion, vol. 55, pp. 220–244, 2020.
[2] S. Esakkirajan, T. Veerakumar, A. N. Subramanyam, and C. H. PremChand, “Removal of High Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter,” IEEE Signal Process. Lett., vol. 18, no. 5, pp. 287–290, May 2011, doi: 10.1109/LSP.2011.2122333.
[3] U. Erkan and L. Gökrem, “A new method based on pixel density in salt and pepper noise removal,” Turk. J. Electr. Eng. Comput. Sci., vol. 26, no. 1, pp. 162–171, 2018.
[4] D. N. Thanh, V. S. Prasath, and U. Erkan, “An improved BPDF filter for high density salt and pepper denoising,” in 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), IEEE, 2019, pp. 1–5.
[5] R. Rojas and P. Rodriguez, “Spatially adaptive total variation image denoising under salt and pepper noise,” in 2011 19th European Signal Processing Conference, IEEE, 2011, pp. 278–282.
[6] H. Hwang and R. A. Haddad, “Adaptive median filters: new algorithms and results,” IEEE Trans. Image Process., vol. 4, no. 4, pp. 499–502, 1995.
[7] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 1479–1485, 2005.
[8] L. Liang, S. Deng, L. Gueguen, M. Wei, X. Wu, and J. Qin, “Convolutional neural network with median layers for denoising salt-and-pepper contaminations,” Neurocomputing, vol. 442, pp. 26–35, 2021.
[9] X. Deng, Y. Ma, and M. Dong, “A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN,” Pattern Recognit. Lett., vol. 79, pp. 8–17, 2016.
[10] D. N. H. Thanh and S. Engínoğlu, “An iterative mean filter for image denoising,” IEEE Access, vol. 7, pp. 167847–167859, 2019.
[11] J. S. Lim, Two-dimensional signal and image processing, Prentice Hall, 1990.
[12] P. Zhang and F. Li, “A new adaptive weighted mean filter for removing salt-and-pepper noise,” IEEE Signal Process. Lett., vol. 21, no. 10, pp. 1280–1283, 2014.
[13] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in 2010 20th international conference on pattern recognition, IEEE, 2010, pp. 2366–2369.
[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.
[15] N. Asuni and A. Giachetti, “TESTIMAGES: a Large-scale Archive for Testing Visual Devices and Basic Image Processing Algorithms,” in STAG, 2014, pp. 63–70.
[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, IEEE, 2001, pp. 416–423.
DOI: https://doi.org/10.34238/tnu-jst.9133
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu