MẶT TRƯỢT CẢI TIẾN VÀ MẠNG NƠ-RON NHÂN TẠO VỚI ỨNG DỤNG CHO ĐIỀU KHIỂN ROBOT
Thông tin bài báo
Ngày nhận bài: 13/12/23                Ngày hoàn thiện: 29/01/24                Ngày đăng: 30/01/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] G. D. S. Lima, V. R. F. Moreira, and W. M. Bessa, “Accurate trajectory tracking control with adaptive neural networks for omnidirectional mobile robot subject to unmodeled dynamics,” J. Braz. Soc. Mech. Sci. Eng., vol. 45, no. 1, pp. 1–11, 2023.
[2] Y. Liu, J. J. Zhu, R. L. Williams, and J. Wu, “Omni-directional mobile robot controller based on trajectory linearization,” Robot. Auton. Syst., vol. 56, no. 5, pp. 461–479, 2008.
[3] T. H. Le, D. Tran, and V. T. Vu, “Adaptive Sliding Mode Control for Three-Wheel Omnidirectional Mobile Robot,” Int. J. Eng. Trends Technol., vol. 71, no. 5, pp. 9–17, 2023.
[4] N. Hacene and B. Mendil, “Motion Analysis and Control of Three-Wheeled Omnidirectional Mobile Robot,” J. Control Autom. Electr. Syst., vol. 30, no. 2, pp. 194–213, 2019.
[5] M. A. Kawtharani, V. Fakhari, and M. R. Haghjoo, “Tracking Control of an Omni-Directional Mobile Robot,” in 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey: IEEE, 2020, pp. 1–8.
[6] A. S. Andreev and O. A. Peregudova, “On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass,” Nelineinaya Din., vol. 16, no. 1, pp. 115–131, 2020.
[7] H. Mou, “Research On the Formation Method of Omnidirectional Mobile Robot Based On Dynamic Sliding Mode Control,” Acad. J. Manuf. Eng., vol. 18, pp. 148–154, 2020.
[8] D. Nganga-Kouya, A. F. Okou, and J. M. L. N. Mezui, “Modeling and Nonlinear Adaptive Control for Omnidirectional Mobile Robot,” Res. J. Appl. Sci. Eng. Technol., vol. 18, no. 2, pp. 59–69, 2021.
[9] C. Ren, C. Li, L. Hu, X. Li, and S. Ma, “Adaptive model predictive control for an omnidirectional mobile robot with friction compensation and incremental input constraints,” Trans. Inst. Meas. Control, vol. 44, no. 4, pp. 835–847, 2022.
[10] A. Mehmood, I. U. H. Shaikh, and A. Ali, “Application of Deep Reinforcement Learning for Tracking Control of 3WD Omnidirectional Mobile Robot,” Inf. Technol. Control, vol. 50, no. 3, pp. 507–521, 2021.
[11] C.-H. Lin and F.-Y. Hsiao, “Proportional-Integral Sliding Mode Control with an Application in the Balance Control of a Two-Wheel Vehicle System,” Applied Sciences, vol. 10, no. 1, pp. 1-27, 2020.
[12] J. Liu, Sliding Mode Control Using MATLAB. Academic Press, 2017.
[13] A. İ. Kaya, M. İLkuçar, and A. ÇiFci, “Use of Radial Basis Function Neural Network in Estimating Wood Composite Materials According to Mechanical and Physical Properties,” Erzincan University Journal of Science and Technology, vol. 12, no. 1, pp. 116–123, 2019.
[14] J. Liu, Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation. Springer Berlin, Heidelberg, 2013.
[15] T. T. T. Tran, T. T. Pham, and C. N. Nguyen, “Performance evaluation of the reaching laws in sliding mode control for omnidirectional mobile robot,” the 6th Vietnam International Conference and Exhibition on Control and Automation –VCCA2021, 2021, pp. 801-809.
DOI: https://doi.org/10.34238/tnu-jst.9400
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu