ĐẶC TÍNH TOÀN DIỆN VÀ MÔ HÌNH DỊ HƯỚNG PHẲNG CỦA THÉP KHÔNG GỈ SUS 304 ĐỂ DỰ ĐOÁN BIÊN DẠNG TAI CHÍNH XÁC TRONG QUÁ TRÌNH DẬP VUỐT CỐC TRÒN
Thông tin bài báo
Ngày nhận bài: 23/12/23                Ngày hoàn thiện: 25/03/24                Ngày đăng: 25/03/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] G. K. Deshwal and N. R. Panjagari, “Review on metal packaging: materials, forms, food applications, safety and recyclability,” J. Food Sci. Technol., vol. 57, no. 7, pp. 2377–2392, 2020, doi: 10.1007/s13197-019-04172-z.
[2] T. C. Chen, J. C. Lin, and R. M. Lee, “Analysis of deep drawing process for stainless steel micro-channel array,” Materials (Basel)., vol. 10, no. 4, pp. 12–14, 2017, doi: 10.3390/ma10040423.
[3] T. C. Chen, C. M. Hsu, and C. C. Wang, “The deep drawing of a flanged square hole in thin stainless steel sheet,” Metals (Basel)., vol. 11, no. 9, 2021, doi: 10.3390/met11091436.
[4] T. Altan and A. E. Tekkaya, Sheet Metal Forming: Processes and Applications. ASM International, 2012.
[5] K. Chen, A. J. Carter, and Y. P. Korkolis, “Flange Wrinkling in Deep-Drawing: Experiments, Simulations and a Reduced-Order Model †,” J. Manuf. Mater. Process., vol. 6, no. 4, 2022, doi: 10.3390/jmmp6040076.
[6] Q. T. Pham and Y. S. Kim, “Identification of the plastic deformation characteristics of AL5052-O sheet based on the non-associated flow rule,” Met. Mater. Int., vol. 23, no. 2, pp. 254–263, 2017, doi: 10.1007/s12540-017-6378-5.
[7] H. Hippke, N. Manopulo, J. W. Yoon, and P. Hora, “On the efficiency and accuracy of stress integration algorithms for constitutive models based on non-associated flow rule,” Int. J. Mater. Form., vol. 11, no. 2, pp. 239–246, 2018, doi: 10.1007/s12289-017-1347-6.
[8] G. Chen, Z. Ke, C. Ren, and J. Li, “Constitutive modeling for Ti-6Al-4V alloy machining based on the SHPB tests and simulation,” Chinese J. Mech. Eng. (English Ed., vol. 29, no. 5, pp. 962–970, 2016, doi: 10.3901/CJME.2016.0406.046.
[9] R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proc. R. Soc. London, Ser. A, vol. 193, no. 1033, pp. 281–297, 1948.
[10] Q. T. Pham and Y. S. Kim, “Evaluation on Flexibility of Phenomenological Hardening Law for Automotive Sheet Metals,” Metals (Basel)., vol. 12, no. 4, pp. 1–19, 2022, doi: 10.3390/met12040578.
[11] W. F. Hosford, “A generalized isotropic yield criterion,” J. Appl. Mech. Trans. ASME, vol. 39, no. 2, pp. 607–609, 1972, doi: 10.1115/1.3422732.
[12] F. Barlat et al., “Plane stress yield function for aluminum alloy sheets - Part 1: Theory,” Int. J. Plast., vol. 19, no. 9, pp. 1297–1319, 2003, doi: 10.1016/S0749-6419(02)00019-0.
[13] E. Lee, T. B. Stoughton, and J. W. Yoon, “A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule,” Int. J. Plast., 2017, doi: 10.1016/j.ijplas.2017.08.007.
[14] N. Park, T. B. Stoughton, and J. Whan, “A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule,” Int. J. Plast., vol. 121, no. April, pp. 76–100, 2019, doi: 10.1016/j.ijplas.2019.04.015.
[15] M. Safaei, J. Whan, and W. De Waele, “Study on the definition of equivalent plastic strain under non-associated flow rule for finite element formulation,” Int. J. Plast., vol. 58, pp. 219–238, 2014, doi: 10.1016/j.ijplas.2013.09.010.
[16] ABAQUS 6.14, ANALYSIS USER’S GUIDE, Volume III. Providence, Rhode Island: Dassault Systèmes Simulia Corp., 2014.
[17] D. Banabic et al., Sheet metal forming processes: Constitutive modelling and numerical simulation. Springer, 2010.
[18] B. M. L. Zheng, C. Cheng, and M. Wan, “Experimental characterization and theoretical modeling of size-dependent distortional hardening behavior of ultrathin metal sheets under multi-axial loading,” Eur. J. Mech. - A/Solids, vol. 92, 2022, doi: 10.1016/j.euromechsol.2021.104461.
[19] T. B. Stoughton and J. W. Yoon, “Anisotropic hardening and non-associated flow in proportional loading of sheet metals,” Int. J. Plast., vol. 25, no. 9, pp. 1777–1817, 2009, doi: 10.1016/j.ijplas.2009.02.003.
[20] D. G. Lai, D. H. Tran, Q. D. Le, and V. C. Nguyen, “The effect of technology parameters on the size of the ‘ear’ when deep drawing for the first time of anisotropic cylindrical simulation,” J. Sci. Tech. - Le Quy Don Tech. Univ., vol. 18, no. 02, pp. 5–15, 2023, doi: 10.56651/lqdtu.jst. v18.n02.683.
[21] L. Luo, D. Wei, G. Zu, and Z. Jiang, “Influence of blank holder-die gap on micro-deep drawing of SUS304 cups,” Int. J. Mech. Sci., vol. 191, 2021, Art. no. 106065, doi: 10.1016/j.ijmecsci. 2020.106065.
[22] S. N. Yuan et al., “Study on size effects in micro deep drawing of stainless steel foil,” J. Phys. Conf. Ser., vol. 2020, no. 1, 2021, doi: 10.1088/1742-6596/2020/1/012040.
[23] F. Barlat, J. W. Yoon, and O. Cazacu, “On linear transformations of stress tensors for the description of plastic anisotropy,” Int. J. Plast., vol. 23, no. 5, pp. 876–896, 2007, doi: 10.1016/j.ijplas.2006.10.001.
[24] B. Wu, K. Ito, N. Mori, T. Oya, T. Taylor, and J. Yanagimoto, “Constitutive Equations Based on Non-associated Flow Rule for the Analysis of Forming of Anisotropic Sheet Metals,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 7, no. 2, pp. 465–480, 2020, doi: 10.1007/s40684-019-00032-5.
[25] K. Chung, D. Kim, and T. Park, “Analytical derivation of earing in circular cup drawing based on simple tension properties,” Eur. J. Mech. A/Solids, vol. 30, no. 3, pp. 275–280, 2011, doi: 10.1016/j.euromechsol.2011.01.006.
DOI: https://doi.org/10.34238/tnu-jst.9469
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





