THUẬT TOÁN TÍNH GẦN ĐÚNG ĐẠO HÀM CÁC CẤP VỚI ĐỘ CHÍNH XÁC BẬC CAO
Thông tin bài báo
Ngày nhận bài: 02/01/24                Ngày hoàn thiện: 28/03/24                Ngày đăng: 29/03/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] R. B. Srivastava and S. Shukla, Numerical accuracies of Lagrange's and Newton polynomial interpolation: Numerical accuracies of Interpolation formulas. LAP LAMBERT Academic Publishing, 2012.
[2] J. Li, "General explicit difference formulas for numerical differentiation," Journal of Computational and Applied Mathematics, vol. 183, no. 1, pp. 29-52, 2005.
[3] M. Kaur1, S. Kumar, and J. Bhatti, “Numerical Solution to Sixth Order Ordinary Differential Equation Using Three Stage Eighth Order Runge-Kutta Type Method,” The Electrochemical Society, vol. 107, no. 1, pp. 86-97, 2022.
[4] Q. A Dang and Q. L. Dang, "A unified approach to fully third order nonlinear boundary value problems," J. Nonlinear Funct. Anal, 2020, Art. no. 9, doi: 10.23952/jnfa.2020.9.
[5] Q. A Dang and Q. L. Dang, “Simple numerical methods of second and third-order convergence for solving a fully third-order nonlinear boundary value problem,” Numer. Algor., vol. 87, pp. 1479–1499, 2021, doi: 10.1007/s11075-020-01016-2.
[6] Q. A Dang and T. H. Nguyen, “Solving the Dirichlet problem for fully fourth order nonlinear differential equation,” Afr. Mat., vol. 30, pp. 623–641, 2019, doi: 10.1007/s13370-019-00671-6.
[7] J. Alzabut, S. R. Grace, and G. N. Chhatria, "New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms," Journal of Mathematics and Computer Science, vol. 28, no. 3, pp. 294-305, 2022.
[8] S. Baraket, S. Mahdaoui, and T. Ouni, "Limiting profile of the blow-up solutions for the fourth-order nonlinear Emden-Fowler equation with a singular source," Discrete and Continuous Dynamical Systems - S, vol. 16, no. 6, pp. 1181-1200, 2023.
DOI: https://doi.org/10.34238/tnu-jst.9516
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





