TỔNG HỢP NANO LƯỠNG KIM Cu/Ag BẰNG PHƯƠNG PHÁP XANH SỬ DỤNG DỊCH CHIẾT VỎ CHANH
Thông tin bài báo
Ngày nhận bài: 14/03/24                Ngày hoàn thiện: 29/05/24                Ngày đăng: 30/05/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] X. Yang, J. He, S. Xu, D. Zhang, L. Fu, S. Zhang, X. Kai, X. Zhang, L. Pi, and Y. Mao, “Microstructure and brazing properties of a novel Ag–Cu-Ga solder,” Journal of Materials Research and Technology, vol. 23, 2023, doi: 10.1016/j.jmrt.2023.01.109.
[2] Z. Zhang, Y. Ru, T. Zuo, J. Xue, Y. Wu, Z. Gao, Y. Liu, and L. Xiao, “Achieving High Strength and High Conductivity of Cu-6 wt%Ag Sheets by Controlling the Aging Cooling Rate,” Materials, vol. 16, 2023, Art. no. 3632, doi: 10.3390/ ma16103632.
[3] G. Li et al., “Facile Preparation of Monodisperse Cu@Ag Core–Shell Nanoparticles for Conductive Ink in Printing Electronics,” Micromachines (Basel), vol. 14, no. 7, Jul. 2023, doi: 10.3390/mi14071318.
[4] S. Shang et al., “Synthesis of Cu@Ag core-shell nanoparticles for characterization of thermal stability and electric resistivity,” Applied Physics A, vol. 124, no. 7, 2018, doi: 10.1007/s00339-018-1887-8.
[5] M. Liang, Y. Zhu, and S. Sun, “Cu@Ag core-shell nanoparticle with multiple morphologies: A simple surfactant-free synthesis and finite element simulation,” Micro Nano Lett., vol. 15, no. 6, pp. 396–398, May 2020, doi: 10.1049/mnl.2019.0776.
[6] Y. Y. L. Sip et al., “Cu-Ag Alloy Nanoparticles in Hydrogel Nanofibers for the Catalytic Reduction of Organic Compounds,” ACS Appl Nano Mater, vol. 4, no. 6, pp. 6045–6056, Jun. 2021, doi: 10.1021/acsanm.1c00881.
[7] Y. T. Pan, W. Zhu, and H. Yang, “Reaction-Driven Formation of Ag-Cu Alloy Nanostructures from Cu@Ag Core-Shell Nanoparticles Analyzed by Moirè Patterns Using Environmental TEM Images,” Surf Sci, vol. 736, Oct. 2023, doi: 10.1016/j.susc.2023.122349.
[8] S. Singh and K. Dunn, “Composition-Tunable Properties of Cu(Ag) Alloy for Hybrid Bonding Applications,” Materials, vol. 16, no. 23, Dec. 2023, doi: 10.3390/ma16237481.
[9] C. C. Jian, J. Zhang, and X. Ma, “Cu-Ag alloy for engineering properties and applications based on the LSPR of metal nanoparticles,” RSC Adv, vol. 10, no. 22, pp. 13277–13285, Apr. 2020, doi: 10.1039/d0ra01474e.
[10] X. Zhu, Z. Xiao, J. An, H. Jiang, Y. Jiang, and Z. Li, “Microstructure and properties of Cu-Ag alloy prepared by continuously directional solidification,” J. Alloys Compd., vol. 883, Nov. 2021, doi: 10.1016/j.jallcom.2021.160769.
[11] X. Wu, H. Jia, J. Fan, J. Cao, and C. Su, “Study on the Effect of Cold Deformation and Heat Treatment on the Properties of Cu-Ag Alloy Wire,” Micromachines (Basel), vol. 14, no. 8, Aug. 2023, doi: 10.3390/mi14081635.
[12] S. I. Bogatyrenko, A. P. Kryshtal, and A. Kruk, “Effect of Size on the Formation of Solid Solutions in Ag-Cu Nanoparticles,” Journal of Physical Chemistry C, vol. 127, no. 5, pp. 2569–2580, Feb. 2023, doi: 10.1021/acs.jpcc.2c07132.
[13] J. M. Conesa, M. V. Morales, C. López-Olmos, I. Rodríguez-Ramos, and A. Guerrero-Ruiz, “Comparative study of Cu, Ag and Ag-Cu catalysts over graphite in the ethanol dehydrogenation reaction: Catalytic activity, deactivation and regeneration,” Appl. Catal A Gen., vol. 576, pp. 54–64, Apr. 2019, doi: 10.1016/j.apcata.2019.02.031.
[14] S. Kunwar et al., “Bio-Fabrication of Cu/Ag/Zn Nanoparticles and Their Antioxidant and Dye Degradation Activities,” Catalysts, vol. 13, no. 5, May 2023, doi: 10.3390/catal13050891.
[15] D. Yang et al., “Bimetallic Cu-Ag/SiO2 catalysts with tunable product selectivity and enhanced low-temperature stability in the dimethyl oxalate hydrogenation,” Molecular Catalysis, vol. 528, Aug. 2022, doi: 10.1016/j.mcat.2022.112508.
[16] M. Beltrán-Gastélum et al., “Ag-Cu Nanoparticles as Cathodic Catalysts for an Anion Exchange Membrane Fuel Cell,” Catalysts, vol. 13, no. 7, Jul. 2023, doi: 10.3390/catal13071050.
[17] R. Y. Rawashdeh, G. Qabaja, and B. A. Albiss, “Antibacterial activity of multi-metallic (Ag–Cu–Li) nanorods with different metallic combination ratios against Staphylococcus aureus,” BMC Res Notes, vol. 16, no. 1, Dec. 2023, doi: 10.1186/s13104-023-06284-4.
[18] W. Li et al., “Enhanced Antibacterial Activity at Ag-Cu Nanojunctions: Unveiling the Mechanism with Simple Surfaces of CuNPs-on-Ag Films,” ACS Omega, vol. 8, no. 38, pp. 34919–34927, Sep. 2023, doi: 10.1021/acsomega.3c04303.
[19] S. V. Dubkov et al., “SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation,” Optical Materials: X, vol. 7, Aug. 2020, doi: 10.1016/j.omx.2020.100055.
[20] J. Zhang et al., “Cu-Ag@ZIF-8 film for SERS detection of gaseous molecule,” J. Alloys Compd., vol. 973, Feb. 2024, doi: 10.1016/j.jallcom.2023.172802.
[21] C. Duhamel, J. L. Bonnentien, and Y. Champion, “Synthesis and characterization of Ag doped Cu nanoparticles,” J. Alloys Compd., vol. 460, no. 1–2, pp. 191–195, Jul. 2008, doi: 10.1016/j.jallcom. 2007.05.064.
[22] A. Ceylan, K. Jastrzembski, and S.I. Shah, “Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties,” Metall Mater Trans. A, vol. 37, pp. 2033–2038, 2006, doi: 10.1007/BF02586123.
[23] N. Hikmah, N. F. Idrus, J. Jai, and A. Hadi, “Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Jun. 2016, doi: 10.1088/1755-1315/36/1/ 012050.
[24] N. M. Zain, A. G. F. Stapley, and G. Shama, “Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications,” Carbohydr Polym., vol. 112, pp. 195-202, 2014, doi: 10.1016/j.carbpol.2014.05.081.
[25] R. Latif-ur, S. Afzal, L. S. Kay, H. Changseok, N.N. Mallikarjuna, S. D. Endalkachew, Q. Rumana, K. M. Saleem, K. H. Bernhard, and D. D. Dionysios, “Monitoring of 2-butanone using a Ag–Cu bimetallic alloy nanoscale electrochemical sensor,” RSC Adv., vol. 5, no. 55, pp. 44427–44434, 2015, doi:10.1039/C5RA03633J.
[26] A. D. Kondorskiy and V. S. Lebedev, “Size and Shape Effects in Optical Spectra of Silver and Gold Nanoparticles,” J. Russ Laser Res., vol. 42, pp. 697–712, 2021, doi: 10.1007/s10946-021-10012-3.
[27] S. Raja, V. Ramesh, and V. Thivaharan, “Antibacterial and anticoagulant activity of silver nanoparticles synthesised from a novel source-pods of Peltophorum pterocarpum,” Journal of Industrial and Engineering Chemistry, vol. 29, pp. 257–264, Sep. 2015, doi: 10.1016/j.jiec.2015.03.033.
[28] S. Bhadra, A. Saha, and B. C. Ranu, “One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: High diastereoselectivity achieved for vinyl dithiocarbamates,” Green Chemistry, vol. 10, no. 11, pp. 1224–1230, Nov. 2008, doi: 10.1039/b809200a.
[29] C. Michał, B. Dorota, S. Karolina, R. Ewa, M. Sebastian, and N. J. Joanna, “Optical Properties of Submillimeter Silver Nanowires Synthesized Using the Hydrothermal Method,” Materials, vol. 12, no. 5, 2019, doi:10.3390/ma12050721.
[30] R. Phul, C. Kaur, U. Farooq, et al., “Ascorbic acid assisted synthesis, characterization and catalytic application of copper nanoparticles,” Material Sci. & Eng. Int. J., vol. 2, no. 4, pp. 90-94, 2018, doi: 10.15406/mseij.2018.02.00040.
DOI: https://doi.org/10.34238/tnu-jst.9884
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu