CHARACTERISTICS AND MOLECULAR EVOLUTION OF THE AP2 GENE FAMILY IN SOYBEAN (Glycine max (L.) Merr.) | Giang | TNU Journal of Science and Technology

CHARACTERISTICS AND MOLECULAR EVOLUTION OF THE AP2 GENE FAMILY IN SOYBEAN (Glycine max (L.) Merr.)

About this article

Received: 08/04/24                Revised: 20/05/24                Published: 20/05/24

Authors

1. Nguyen Thu Giang, TNU - University of Medicine and Pharmacy; TNU - University of Education
2. Nguyen Thi Hai Yen, TNU - University of Sciences
3. Nguyen Huu Quan, TNU - University of Education
4. Chu Hoang Mau Email to author, TNU - University of Education

Abstract


Soybean [Glycine max (L.) Merill] is a crop with nutritional and economic value and a soil improvement crop. Soybean belongs to a group of crops with poor resistance to adverse abiotic factors. Therefore, research to improve the ability of soybean plants to withstand abiotic stresses is essential in the context of climate change. This study aims to analyze the molecular evolution of the AP2 gene family, the DREB gene subfamily and the AP2 domain to select candidate genes for improving soybean resistance. Using BioEdit, BLAST and MEGA11 software to search, compare data and analyze phylogeny, the results show that the phylogenetic tree reflects the diversity and evolution of genes in the AP2 family and the DREB subfamily and AP2 domain in soybean. At the same time, 18 DREB genes were identified located on 17 soybean chromosomes. Among the DREB genes, the functions of some genes have yet to be thoroughly studied and need to be verified experimentally.

Keywords


AP2 gene family; AP2 domain; DREB gene subfamily; DNA binding sites; Soybean

References


[1] H. M. Chu, T. T. H. Nguyen, V. T. T. Nguyen, and H. H. Chu, Gene and resistance characteristics of soybean plants. Vietnam National University Pres, Hanoi, 2011.

[2] C. Lata and M. Prasad, “Role of DREBs in regulation of abiotic stress responses in plants,” Journal of Experimental Botany, vol. 62, pp. 4731-4748, 2011.

[3] Y. Sakuma, Q. Liu, J. G. Dubouzet, H. Abe, K. Shinozaki, and K. Yamaguchi-Shinozaki, “DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression,” Biochem. Biophys. Res. Commun., vol. 290, pp. 998-1009, 2002.

[4] D. Kizis, V. Lumbreras, and M. pages, “Role of AP2/EREBP transcription factors in gene regulation during abiotic stress,” FEBS Letters, vol. 498, pp. 187-189, 2001.

[5] M. Tang, M. Tang, J. Sun, Y. Liu, F. Chen, and S. Shen, “Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas,” Plant Mol. Bio., vol. 63, pp. 419-428, 2007.

[6] T. H. Phang, G. Shao, and H. M. Lam, “Salt tolerance in soybean,” J Integr Plant Biol., vol. 50, pp. 1196-1212, 2008.

[7] X. T. Dao, M. T. Ho, T. T. T. Vu, V. S. Le, and H. M. Chu, “Cloning and overexpression of GmDREB2 gene from a Vietnamesedrought-resistant Soybean variety,” Braz. Arch. Biol. Technol., vol. 58, pp. 651-657, 2015.

[8] T. Q. Tu, P. Vaciaxa, T. T. M. Lo, N. H. Nguyen, N. T. T. Pham, Q. H. Nguyen, P. T. Do, L. T. N. Nguyen, Y. T. H. Nguyen, and M. H. Chu, “GmDREB6, a soybean transcription factor, notably affects the transcription of the NtP5CS and NtCLC genes in transgenic tobacco under saltstress conditions,” Saudi Journal of Biological Sciences, vol. 28, 12, pp. 7175-7181, 2021, doi 10.1016/j.sjbs.2021.08.018.

[9] NCBI, “AP2 in Glycine max,” Gene. [Online]. Available: https://www.ncbi.nlm.nih.gov/gene/?term=AP2+in+Glycine+max. [Accessed Feb. 20, 2024].[10] NCBI, “Glycine max gene for dehydration-responsive element-binding protein,” Gene. [Online]. Available: https://www.ncbi.nlm.nih.gov/gene/?term=Glycine+max+gene+for+dehydration-responsive+element-binding+protein. [Accessed Feb. 20, 2024][11] National Center for Biotechnology Information, GenBank. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore. [Accessed Feb. 20, 2024][12] K. Tamura, G. Stecher, and S. Kumar, “MEGA11: Molecular Evolutionary Genetics Analysis Version 11,” Mol Biol Evol., vol. 38, pp. 3022-3027, 2021.[13] K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Mol Biol Evol., vol. 10, pp. 512-526, 1993.

[14] J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, pp. 783-791, 1985.

[15] E. J. Stockinger, S. J. Gilmour, and M. F. Thomashow, “Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit,” Proc. Natl. Acad. Sci. U.S.A., vol. 94, pp. 1035-1040, 1997.

[16] Q. Liu, M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki, “Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in droughtand low-temperature-responsive gene expression, respectively, in Arabidopsis,” Plant Cell, vol. 10, pp. 1391-1406, 1998.

[17] K. R. Jaglo-Ottosen, S. J. Gilmour, D. G. Zarka, O. Schabenberger, and M. F. Thomashow, “Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance,” Science, vol. 280, pp. 104-106, 1998.

[18] Q. H. Nguyen, L. T. K. Vu, L. T. N. Nguyen, N. T. T. Pham, Y. T. H. Nguyen, S. V. Le, and M. H. Chu, “Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants,” Sci Rep., vol. 9, 2019, Art. no. 19663.

[19] T. T. N. Pham, H. Q. Nguyen, T. N. L. Nguyen, X. T. Dao, D.T. Sy, V. S. Le, and H. M. Chu, “Overexpression of the GmDREB2 gene increases proline accumulation and tolerance to drought stress in soybean plants,” AJCS, vol. 14, pp. 495-503, 2020.

[20] Y. Zhou, W. Zhou, H. Liu, P. Liu, and Z. Li, “Genome-wide analysis of the soybean DREB gene family: identification, genomic organization and expression profiles in response to drought stress,” Plant Breeding, vol. 139, pp. 1158-1167, 2020.




DOI: https://doi.org/10.34238/tnu-jst.10058

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved