PERSONALIZED MEDICINE IN GOUT TREATMENT
About this article
Received: 13/05/24                Revised: 17/06/24                Published: 17/06/24Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] B. B. Spear, M. Heath-Chiozzi, and J. Huff, "Clinical application of pharmacogenetics," Trends in Molecular Medicine, vol. 7, no. 5, p. 201-4, 2001.
[2] M. Pirmohamed, S. James, S. Meakin, C. Green, A. K. Scott, T. J. Walley, K. Farrar, B. K. Park, and A. M. Breckenridge, "Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients," British medical journal, vol. 329, no. 7456, p. 15-9, 2004.
[3] H. M. Dunnenberger, K. R. Crews, J. M. Hoffman, K. E. Caudle, U. Broeckel, S. C. Howard, R. J. Hunkler, T. E. Klein, W. E. Evans, and M. V. Relling, "Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers," Annual review of pharmacology and toxicology, vol. 55, no. p. 89-106, 2015.
[4] Z. W. Zhou, X. W. Chen, K. B. Sneed, Y. X. Yang, X. Zhang, Z. X. He, K. Chow, T. Yang, W. Duan, and S. F. Zhou, "Clinical association between pharmacogenomics and adverse drug reactions," Drugs, vol. 75, no. 6, p. 589-631, 2015.
[5] O. Osanlou, M. Pirmohamed, and A. K. Daly, "Pharmacogenetics of Adverse Drug Reactions," Journal of advanced clinical pharmacology, vol. 83, pp. 155-190, 2018.
[6] K. K. Reynolds, D. L. Pierce, F. Weitendorf, and M. W. Linder, "Avoidable drug-gene conflicts and polypharmacy interactions in patients participating in a personalized medicine program," Journal of Personalized Medicine, vol. 14, no. 3, pp. 221-233, 2017.
[7] Thu Ky, "Causes, symptoms and consequences of gout," (in Vietnamese), 2021. [Online]. Available: https://vnexpress.net/nguyen-nhan-trieu-chung-va-hau-qua-cua-benh-gout-4357255.html [Accessed Feb. 08, 2024].
[8] L. Dean, "Lesinurad Therapy and CYP2C9 Genotype," 2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK537366/ [Accessed Oct. 15, 2023].
[9] L. Dean and M. Kane, "Allopurinol therapy and HLA-B* 58: 01 genotype," 2020. [Online]. Available: https://europepmc.org/article/nbk/nbk127547 [Accessed 16/10/2023].
[10] L. Dean and M. Kane, "Celecoxib therapy and CYP2C9 genotype," 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK379478/ [Accessed Oct. 16, 2023].
[11] L. Dean and M. Kane, "Pegloticase therapy and G6PD genotype," 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK562620/ [Accessed Oct. 16, 2023].
[12] M. P. Victoria, A. S. Stuart, P. Munir, E. Bernard, S. K. Megan, L. Brandi, and J. M. Adriana, "Medical Genetics Summaries, Last Updated: December 17, 2021," 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK61999/ [Accessed Oct. 12, 2023].
[13] M. Dehlin, L. Jacobsson, and E. Roddy, "Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors," Nature Reviews Rheumatology, vol. 16, no. 7, p. 380-390, 2020.
[14] M. James and B. Stella, "Everything you need to know about gout," 2021. [Online]. Available: https://www.medicalnewstoday.com/articles/144827 [Accessed Dec. 22, 2023].
[15] Nguyen Thi Ngoc Lan, "Gout disease," in Internal medicine musculoskeletal pathology (in Vietnamse). Ha Noi: Medical Publishing House, pp. 187-21, 2015.
[16] K. L. Rock, H. Kataoka, and J.-J. Lai, "Uric acid as a danger signal in gout and its comorbidities," Nature Reviews Rheumatology, vol. 9, no. 1, pp. 13-23, 2013.
[17] MSD manual, "Gout Disease, Arcording Lawrence M. Ryan , MD, Medical College of Wisconsin (in Vietnamse)," 2015. [Online]. Available: https://www.msdmanuals.com [Accessed 15/02/2024].
[18] Clinical Reference, "Gout," 2024. [Online]. Available: https://clinref.com/rheumatology/gout/ [Accessed Nov. 12, 2023].
[19] A. Gupta, L. Zheng, V. Ramanujam, and J. Gallagher, "Novel use of pharmacogenetic testing in the identification of CYP2C9 polymorphisms related to NSAID-induced gastropathy," Pain Medicine, vol. 16, no. 5, pp. 866-869, 2015.
[20] A. Isvoran, M. Louet, D. L. Vladoiu, D. Craciun, M.-A. Loriot, B. O. Villoutreix, and M. A. Miteva, "Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism," Drug Discovery Today, vol. 22, no. 2, pp. 366-376, 2017.
[21] D. Van Booven, S. Marsh, H. McLeod, M. W. Carrillo, K. Sangkuhl, T. E. Klein, and R. B. Altman, "Cytochrome P450 2C9-CYP2C9," Pharmacogenetics Genomics, vol. 20, no. 4, pp. 277-281, 2010.
[22] R. Liu, C. Gong, L. Tao, W. Yang, X. Zheng, P. Ma, and L. Ding, "Influence of genetic polymorphisms on the pharmacokinetics of celecoxib and its two main metabolites in healthy Chinese subjects," European Journal of Pharmaceutical Sciences, vol. 79, pp. 13-19, 2015.
[23] S.-H. Kim, D.-H. Kim, J.-Y. Byeon, Y.-H. Kim, D.-H. Kim, H.-J. Lim, C.-M. Lee, S. S. Whang, C.-I. Choi, and J.-W. Bae, "Effects of CYP2C9 genetic polymorphisms on the pharmacokinetics of celecoxib and its carboxylic acid metabolite," Archives of pharmacal research, vol. 40, pp. 382-390, 2017.
[24] Y.-H. Kim, P. Kang, C. K. Cho, E. H. Jung, H.-J. Park, Y. J. Lee, J. W. Bae, C.-G. Jang, and S.-Y. Lee, "Physiologically based pharmacokinetic (PBPK) modeling for prediction of celecoxib pharmacokinetics according to CYP2C9 genetic polymorphism," Archives of pharmacal research, vol. 44, pp. 713-724, 2021.
[25] A. M. Abeles, "Lesinurad in combination with allopurinol: risk without reward? Comment on the article by Saag et al," Arthritis Rheumatology, vol. 69, no. 5, pp. 1122-1122, 2017.
[26] T. Bardin, R. T. Keenan, P. P. Khanna, J. Kopicko, M. Fung, N. Bhakta, S. Adler, C. Storgard, S. Baumgartner, and A. So, "Lesinurad in combination with allopurinol: a randomised, double-blind, placebo-controlled study in patients with gout with inadequate response to standard of care (the multinational CLEAR 2 study)," Annals of the rheumatic diseases, vol. 76, no. 5, pp. 811-820, 2017.
[27] J. A. Singh, "Lesinurad combination therapy with allopurinol in gout: do CLEAR studies make the treatment of gout clearer?," Annals of the rheumatic diseases, vol. 76, no. 5, pp. 779-781, 2017.
[28] X. Zhang, H. Ma, C. Hu, B. Yu, W. Ma, Z. Wu, X. Luo, H. Zou, and M. Guan, "Detection of HLA-B* 58: 01 with TaqMan assay and its association with allopurinol-induced sCADR," Clinical Chemistry Laboratory Medicine, vol. 53, no. 3, pp. 383-390, 2015.
[29] X. Zhang, H. Ma, C. Hu, B. Yu, W. Ma, Z. Wu, X. Luo, H. Zou, M. J. C. C. Guan, and L. Medicine, "Detection of HLA-B* 58: 01 with TaqMan assay and its association with allopurinol-induced sCADR," Clinical Chemistry Laboratory Medicine, vol. 53, no. 3, pp. 383-390, 2015.
[30] C.-H. Lin, J.-K. Chen, T.-M. Ko, C.-Y. Wei, J.-Y. Wu, W.-H. Chung, S.-Y. Chen, Y.-D. Liao, S.-I. Hung, and Y.-T. Chen, "Immunologic basis for allopurinol-induced severe cutaneous adverse reactions: HLA-B* 58: 01-restricted activation of drug-specific T cells and molecular interaction," Journal of Allergy Clinical Immunology, vol. 135, no. 4, pp. 1063-1065, 2015.
[31] R. Pavlos, S. Mallal, D. Ostrov, S. Buus, I. Metushi, B. Peters, and E. Phillips, "T cell–mediated hypersensitivity reactions to drugs," Annual review of medicine, vol. 66, pp. 439-454, 2015.
[32] W. J. Pichler, A. Beeler, M. Keller, M. Lerch, S. Posadas, D. Schmid, Z. Spanou, A. Zawodniak, and B. Gerber, "Pharmacological interaction of drugs with immune receptors: the pi concept," Allergology International, vol. 55, no. 1, pp. 17-25, 2006.
[33] J. Yun, M. J. Marcaida, K. K. Eriksson, H. Jamin, S. Fontana, W. J. Pichler, and D. Yerly, "Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B* 58: 01," The Journal of Immunology, vol. 192, no. 7, pp. 2984-2993, 2014.
[34] Z.-h. Cao, Z.-y. Wei, Q.-y. Zhu, J.-y. Zhang, L. Yang, S.-y. Qin, L.-y. Shao, Y.-t. Zhang, J.-k. Xuan, and Q.-l. Li, "HLA-B* 58: 01 allele is associated with augmented risk for both mild and severe cutaneous adverse reactions induced by allopurinol in Han Chinese," Pharmacogenomics, vol. 13, no. 10, pp. 1193-1201, 2012.
[35] T.-M. Ko, C.-Y. Tsai, S.-Y. Chen, K.-S. Chen, K.-H. Yu, C.-S. Chu, C.-M. Huang, C.-R. Wang, C.-T. Weng, and C.-L. Yu, "Use of HLA-B* 58: 01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study," British medical journal, vol. 351, 2015, doi: 10.1136/bmj.h4848.
[36] C. Lonjou, N. Borot, P. Sekula, N. Ledger, L. Thomas, S. Halevy, L. Naldi, J.-N. Bouwes-Bavinck, A. Sidoroff, and C. De Toma, "A European study of HLA-B in Stevens–Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs," Pharmacogenetics Genomics, vol. 18, no. 2, pp. 99-107, 2008.
[37] H. J. Park, Y. J. Kim, D. H. Kim, J. Kim, K. H. Park, J.-W. Park, and J.-H. Lee, "HLA allele frequencies in 5802 Koreans: varied allele types associated with SJS/TEN according to culprit drugs," Yonsei medical journal, vol. 57, no. 1, pp. 118, 2016.
[38] S.-I. Hung, W.-H. Chung, L.-B. Liou, C.-C. Chu, M. Lin, H.-P. Huang, Y.-L. Lin, J.-L. Lan, L.-C. Yang, and H.-S. Hong, "HLA-B* 5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol," Proceedings of the National Academy of Sciences, vol. 102, no. 11, pp. 4134-4139, 2005.
[39] W. Tassaneeyakul, T. Jantararoungtong, P. Chen, P.-Y. Lin, S. Tiamkao, U. Khunarkornsiri, P. Chucherd, P. Konyoung, S. Vannaprasaht, and C. Choonhakarn, "Strong association between HLA-B* 5801 and allopurinol-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in a Thai population," Pharmacogenetics Genomics, vol. 19, no. 9, pp. 704-709, 2009.
[40] M. Tohkin, N. Kaniwa, Y. Saito, E. Sugiyama, K. Kurose, J. Nishikawa, R. Hasegawa, M. Aihara, K. Matsunaga, and M. Abe, "A whole-genome association study of major determinants for allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis in Japanese patients," The pharmacogenomics journal, vol. 13, no. 1, pp. 60-69, 2013.
[41] H.-R. Kang, Y. K. Jee, Y.-S. Kim, L. C. Hwa, J.-W. Jung, S. H. Kim, H.-W. Park, Y.-S. Chang, I.-J. Jang, S.-H. Cho, K.-U. Min, S.-H. Kim, and W. L. Kyung, "Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans," Pharmacogenetics Genomics, vol. 21, no. 5, pp. 303-307, 2011.
[42] D. E. Low, A. F. Nurul-Aain, W. C. Tan, J. J. Tang, M. F. Bakhtiar, S. Murad, C. C. Chang, C. L. Too, and M. M. Tang, "HLA-B* 58: 01 association in allopurinol-induced severe cutaneous adverse reactions: the implication of ethnicity and clinical phenotypes in multiethnic Malaysia," Pharmacogenetics Genomics, vol. 30, no. 7, pp. 153-160, 2020.
[43] T. Tse, B. Wu, S. Vagholkar, and S. Willcock, "Allopurinol for gout: Consider the case for limited HLA-B 5801 screening," Australian Journal of General Practice, vol. 51, no. 10, p. 813-814, 2022.
[44] H. Matsuoka, D. T. V. Thuan, H. van Thien, T. Kanbe, A. Jalloh, M. Hirai, M. Arai, and F. Kawamoto, "Seven different glucose-6-phosphate dehydrogenase variants including a new variant distributed in Lam Dong Province in southern Vietnam," Acta Medica Okayama, vol. 61, no. 4, pp. 213-219, 2007.
[45] I. S. Tantular and F. Kawamoto, "Distribution of G6PD deficiency genotypes among Southeast Asian populations," Tropical Medicine Health, vol. 49, no. 1, pp. 1-7, 2021.
[46] S. S. Lee, K.-M. Kim, H. Thi-Le, S.-S. Yea, I.-J. Cha, and J.-G. Shin, "Genetic polymorphism of CYP2C9 in a Vietnamese Kinh population," Therapeutic drug monitoring, vol. 27, no. 2, p. 208-210, 2005.
[47] P.T.T, "Research on genetic diversity CYP2C9, CYP2C19 and CYP2D6 gene in healthy Vietnamese and breast cancer patients (in Vietnamese)," 2021. [Online]. Available: https://www.vista.gov.vn/news/ket-qua-nghien-cuu-trien-khai/nghien-cuu-da-dang-di-truyen-cac-gen-cytochrome-450-cyp2c9-cyp2c19-va-cyp2d6-tren-cac-nhom-nguoi-viet-nam-khoe-manh-va-benh-nhan-ung-thu-vu-4370.html [Accessed Feb. 11, 2024].
[48] N. P. Vu, T. T. H. Ma, N. T. B. Tran, H. T. T. Huynh, T. D. Nguyen, D. T. Nguyen, H. Van Nong, M. T. M. Lee, and H. H. Nguyen, "Polymorphic analysis of CYP2C9 gene in Vietnamese population," Molecular biology reports, vol. 45, no. 5, pp. 893-900, 2018.
[49] B. Hoa, N. Hang, K. Kashiwase, J. Ohashi, L. Lien, T. Horie, J. Shojima, M. Hijikata, S. Sakurada, and M. Satake, "HLA‐A,‐B,‐C,‐DRB1 and‐DQB1 alleles and haplotypes in the Kinh population in Vietnam," Tissue antigens, vol. 71, no. 2, pp. 127-134, 2008.
[50] F. F. González-Galarza, L. Y. Takeshita, E. J. Santos, F. Kempson, M. H. T. Maia, A. L. S. d. Silva, A. L. T. e. Silva, G. S. Ghattaoraya, A. Alfirevic, and A. R. Jones, "Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations," Nucleic acids research, vol. 43, no. D1, pp. D784-D788, 2015.
[51] D. V. Nguyen, H. C. Chu, C. Vidal, J. Anderson, N. N. Nguyen, N. Q. T. Do, T. L. Tran, T. N. Nguyen, H. T. T. Nguyen, and R. B. Fulton, "Gene expression profiling in allopurinol-induced severe cutaneous adverse reactions in Vietnamese," Pharmacogenomics, vol. 21, no. 14, pp. 985-994, 2020.
[52] D. A. Do, G. H. L. Le, M. D. Do, and P. T. Mai, "Prevalence of carrying the HLA-B*58:01 allele in patients with skin allergic gout due to allopurinol treatment," Medical Research, vol. 23, no. 1, 2019.
[53] M. D. Do, T. P. Mai, A. D. Do, Q. D. Nguyen, N. H. Le, L. G. H. Le, V. A. Hoang, A. N. Le, H. Q. Le, and P. Richette, "Risk factors for cutaneous reactions to allopurinol in Kinh Vietnamese: results from a case-control study," Arthritis research therapy, vol. 22, no. 1, pp. 1-10, 2020.
[54] D. V. Nguyen, H. C. Chu, C. Vidal, R. B. Fulton, N. N. Nguyen, N. Q. T. Do, T. L. Tran, T. N. Nguyen, H. T. T. Nguyen, and H. H. Chu, "Genetic susceptibilities and prediction modeling of carbamazepine and allopurinol-induced severe cutaneous adverse reactions in Vietnamese," Pharmacogenomics, vol. 22, no. 1, pp. 1-12, 2021.
[55] V. S. Chu, T. H. L. Nguyen, H. T. Tran, X. T. Le, B. K. Nguyen, T. H. N. Le, V. H. Nguyen, N. Q. Tran, V. L. Nguyen, and D. T. Pham, "Predominant HLA Alleles and Haplotypes in Mild Adverse Drug Reactions Caused by Allopurinol in Vietnamese Patients with Gout," Diagnostics, vol. 11, no. 9, p. 1611, 2021.
[56] H. T. Nguyen, J. P. Charlieu, C. T. H. Tran, N. Day, J. J. Farrar, H. T. Tran, and S. J. Dunstan, "Glucose-6-phosphate dehydrogenase (G6PD) mutations and haemoglobinuria syndrome in the Vietnamese population," Malaria journal, vol. 8, no. 1, pp. 1-8, 2009.
[57] G. Bancone, D. Menard, N. Khim, S. Kim, L. Canier, C. Nguong, K. Phommasone, M. Mayxay, S. Dittrich, and M. Vongsouvath, "Molecular characterization and mapping of glucose-6-phosphate dehydrogenase (G6PD) mutations in the Greater Mekong Subregion," Malaria journal, vol. 18, no. 1, pp. 1-15, 2019.DOI: https://doi.org/10.34238/tnu-jst.10372
Refbacks
- There are currently no refbacks.





