EVALUATION OF FENITROTHION DEGRADATION CAPACITY OF PSEUDOMONAS PUTIDA BPPL-102 ISOLATED IN THAI NGUYEN | Quân | TNU Journal of Science and Technology

EVALUATION OF FENITROTHION DEGRADATION CAPACITY OF PSEUDOMONAS PUTIDA BPPL-102 ISOLATED IN THAI NGUYEN

About this article

Received: 27/05/24                Revised: 11/07/24                Published: 17/07/24

Authors

1. Tran Minh Quan Email to author, TNU - University of Agriculture and Forestry
2. Nguyen Manh Tuan, TNU - University of Agriculture and Forestry

Abstract


The objective of this study is molecular identification, determination of culture characteristics and fenitrothion degrading ability of strain BPPL-102. Strain BPPL-102 could grown on Tryptone Soya Broth, R2A, Luria-Bertani and Nutrient Broth media, from 10-40oC and pH 4-7.5. Strain BPPL-102 can assimilate sources of D-glucose, malic acid, D-saccharose, D-mannitol, phenylacetic acid, D-ribose, L-serine, L-alanine, potassium gluconate and glycogen; and producing esterase (C4), esterase lipase (C8), leucine arylamidase, acid phosphatase and naphthol-AS-BI-phosphohydrolase, alkaline phosphatase, D-glucosidase. The 16S rRNA gene sequence of strain BPPL-102 has the highest similarity (99.73%) with Pseudomonas putida NBRC 14164T and 99.04-99.38% with other species of the genus Pseudomonas. Together, the Phylogenetic tree revealed that strain BPPL-102 was arranged in a branch as Pseudomonas putida NBRC 14164T. Based on 16S rRNA gene sequence analysis data, strain BPPL-102 was identified as Pseudomonas putida. Strain BPPL-102 could grown in MSM medium supplemented with fenitrothion at a concentration of 10-100 mg/l (50 mg/l was optimal growth for strain BPPL-102). The fenitrothion (50 mg/l) biodegradation efficiency of Pseudomonas putida BPPL-102 reached 80.54% in 14 days. Therefore, Pseudomonas putida BPPL-102 could be potential strain source for agricultural residual fenitrothion treatment.

Keywords


Identification; Fenitrothion; Biodegradation of pesticides; Isolation; Pesticide residues

References


[1] H. Tamura, S. C. Maness, K. Reischmann, D. C. Dorman, L. E. Gray, and K. W. Gaido, “Androgen receptor antagonism by the organophosphate insecticide fenitrothion,” Toxicological Sciences, vol. 60, no. 1, pp. 56-62, 2001.

[2] M. B. Colović, D. Z. Krstić, T. D. Lazarević-Pašti, A. M. Bondžić, and V. M. Vasić, “Acetylcholinesterase inhibitors: pharmacology and toxicology,” Current Neuropharmacology, vol. 11, no. 3, pp. 315-335, 2013.

[3] I. R. Elyazar, S. I. Hay, and J. K. Baird, “Malaria distribution, prevalence, drug resistance and control in Indonesia,” Adv Parasitol, vol. 74, pp. 41-175, 2011.

[4] H. Katsumata, T. Okada, S. Kaneco, T. Suzuki, and K. Ohta, “Degradation of fenitrothion by ultrasound/ferrioxalate/UV system,” Ultrasonics Sonochemistry, vol. 17, no. 1, pp. 200-206, 2010.

[5] B. Ruomeng, O. Meihao, Z. Siru, G. Shichen, Z. Yixian, C. Junhong, M. Ruijie, L. Yuan, X. Gezhi, C. Xingyu, Z. Shiyi, Z. Aihui, and F. Baishan, “Degradation strategies of pesticide residue: From chemicals to synthetic biology,” Synth Syst Biotechnol., vol. 8, no. 2, pp. 302-313, 2023.

[6] J. R. Guerrero Ramírez, L. A. Ibarra Muñoz, N. Balagurusamy, J. E. F. Ramírez, L. A. Hernández, and J. C. Campos, “Microbiology and Biochemistry of Pesticides Biodegradation,” Int J Mol Sci., vol. 24, no. 21, p. 15969, 2023.

[7] W. Migula, On a new system of bacteria. Works from the Bacteriological Institute of the Technical University of Karlsruhe, 1894, pp. 235-238.

[8] J. F. Wang, M. H. Gao, N. F. Wu, and C. P. Pan, “The degradation effects of a Pseudomonas hydrolase OPHC2 to organophosphorus insecticides,” J Environ Sci., vol. 183, no. 2, pp. 804-810, 2008.

[9] K. D. Kim, J. H. Ahn, T. Kim, S. C. Park, C. N. Seong, H. G. Song, and J. O. Ka, “Genetic and phenotypic diversity of fenitrothion-degrading bacteria isolated from soils,” J Microbiol Biotechnol, vol. 19, no. 2, pp. 113-120, 2009.

[10] A. Derbalah, K. Uobe, N. Nakatani, T. Yamazaki, and H. Sakugawa, “Microbial degradation of fenitrothion in Kurose River water, Hiroshima prefecture, Japan,” Res. J. Environ. Sci., vol. 14, pp. 5-17, 2020.

[11] M. T. Nguyen, T. H. Do, B. D. Do, and V. H. Hoang, “Biological characteristics of Sphingobium limneticum BPTC-107 showing ability of pesticide biodegradation,” TNU Journal of Science and Technology, vol. 229, no. 5, pp. 12-18, 2024.

[12] J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York, 2001, pp. 1-170.

[13] A. Klindworth, E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, and F. O. Glöckner, “Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next generation sequencing-based diversity studies,” Nucleic Acids Res, vol. 41, no. 1, pp. 1-11, 2013.

[14] H. P. Browne, S. C. Forster, B. O. Anonye, N. Kumar, B. A. Neville, M. D. Stares, D. Goulding, and T. D. Lawley, “Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation,” Nature, vol. 533, pp. 543-546, 2016.

[15] G. Briceño, M. Levio, M. E. González, J. M. Saez, G. Palma, H. Schalchli, and M. C. Diez, “Performance of a continuous stirred tank bioreactor employing an immobilized actinobacteria mixed culture for the removal of organophosphorus pesticides,” 3 Biotech, vol. 10, no. 6, p. 252, 2020.

[16] D. Frasson, M. Opoku, T. Picozzi, T. Torossi, S. Balada, T. H. M. Smits, and U. Hilber, “Pseudomonas wadenswilerensis sp. nov. and Pseudomonas reidholzensis sp. nov., two novel species within the Pseudomonas putida group isolated from forest soil,” Int J Syst Evol Microbiol, vol. 67, no. 8, pp. 2853-2861, 2017.

[17] P. Bhatt, X. Zhou, Y. Huang, W. Zhang, and S. Chen, “Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides,” J Hazard Mater, vol. 411, 2021, Art. no. 125026.

[18] S. Pailan and P. Saha, “Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation,” PeerJ., vol. 3, p. 1378, 2015.

[19] A. Aswathi, A. Pandey, and R. K. Sukumaran, “Rapid degradation of the organophosphate pesticide - Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3,” Bioresour Technol., vol. 292, p. 122025, 2019.




DOI: https://doi.org/10.34238/tnu-jst.10476

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved