OPTIMAL ACTIVE SoC BALANCING FOR A STRING OF LITHIUM-ION BATTERY CELLS BASED ON OPTIMIZATION WITH CONSTRAINTS ON TEMPERATURE AND AGING | Duy | TNU Journal of Science and Technology

OPTIMAL ACTIVE SoC BALANCING FOR A STRING OF LITHIUM-ION BATTERY CELLS BASED ON OPTIMIZATION WITH CONSTRAINTS ON TEMPERATURE AND AGING

About this article

Received: 13/02/25                Revised: 27/02/25                Published: 27/02/25

Authors

1. Ta Quang Duy Email to author, Vinh Phuc College of Economics and Technology
2. Nguyen Van Chi, TNU - University of Technology

Abstract


This paper presents an optimal active SoC balancing treatment considering the aging effect for Lithium Ion batteries in the next connected string implemented by CuK switching circuit. With the SoC controlling the target balancing for the cells in the string, it is ensured that in all operating cases, the current and temperature of the cells cannot exceed the permissible technical limits corresponding to the aging level of the cells. The nonlinear optimal control problem was established based on the current and temperature balancing constraints and examines the effect of cell aging in the model of the SoC balancing system. The sequential quadratic programming method was used to solve the mathematical priority at the sample extraction times that determines the optimal duty of PWM to the balancing balances. The SoC balancing results for the cells were compared between the case where all the cells in the string are new and the case where the cells in the string have different chemical ages, showing the difference in the balance control and temperature control of the cells in the string during the SoC balancing process. The application of the SoC balancing method for the cells in the string propopsed in this paperenables the cells in the string to operate more safely. Hence, the battery life of the cells can be extended.

Keywords


Lithium-Ion battery; State of charge; Optimal control; Cell balance; State of health

References


[1] T. Wu, F. Ji, L. Liao, and C. Chang, “Voltage-SOC balancing control scheme for series-connected lithium-ion battery packs,” J. Energy Storage, vol. 25, 2019, Art. no. 100895.

[2] T. Stuart and W. Zhu, “Fast equalization for large lithium ion batteries,” IEEE Aerosp. Electron. Syst, vol. 2, pp. 1-6, 2021.

[3] M.-Y Kim and S.-Y. Moon, “Automatic charge equalization circuit based on regulated voltage source for series connected lithium-ion batteries,” in Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, vol. 2, pp. 2248-2255, 2020.

[4] M. Daowd and M. Antoine, “Single Switched Capacitor Battery Balancing System Enhancements,” Energies, vol. 6, pp. 2149-2174, 2013.

[5] A. C. Baughman and M. Ferdowsi, “Double-Tiered Switched-Capacitor Battery Charge Equalization Technique,” IEEE Trans. Ind. Electron, vol. 55, pp. 2277-2285, 2008.

[6] S. Yarlagadda, “A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology,” IEEE Trans. Ind. Appl, vol. 49, pp. 2720-2729, 2013.

[7] Y.-S. Lee and C.-Y. Duh, “Battery equalization using bi-directional cuk converter in DCVM operation,” in Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, vol. 16, pp. 765-771, 2005.

[8] A. F. Moghaddam and A. V. D. Bossche, “A Ćuk Converter Cell Balancing Technique by Using Coupled Inductors for Lithium-Based Batteries,” Energies, vol. 12, pp. 851-875, 2019.

[9] Z. Zhang and S. Ćuk, “A high efficiency 1.8 kW battery equalizer,” in Proceedings of the Eighth Annual Applied Power Electronics Conference and Exposition, San Diego, USA, 1993, pp. 221–227.

[10] C. S. Moo, Y. C. Hsieh, and I. S. Tsai, “Charge equalization for series-connected batteries,” IEEE Trans. Aerosp. Electron. Syst, vol. 39, pp. 704-710, 2003.

[11] Y. Ma and H. Lin, “Modified State-of-Charge Balancing Control of Modular Multilevel Converter with Integrated Battery Energy Storage System,” Energies, vol. 12, pp. 253-271, 2018.

[12] S.-C. Choi, J.-Y. Jeon, D.-Y. Kim, and C.-Y. Won, “State-of-Charge Balancing Control of a Battery Power Module for a Modularized Battery for Electric Vehicle,” J. Electr. Eng. Technol, vol. 11, pp. 629-638, 2016.

[13] Z. G. Wei, J. Hu, H. He, Y. Li, and B. Xiong, “Load Current and State of Charge Co-Estimation for Current Sensor-Free Lithium-ion Battery,” IEEE Trans. Power Electron, vol. 1, pp. 10970-10975, 2021.

[14] B. Poorali, E. Adib, and H. Farzanehfard, “Soft-switching DC-DC Ćuk converter operating in discontinuous-capacitor-voltage mode,” IET Power Electron., vol. 10, pp. 1679-1686, 2017.

[15] D. Maksimovic and S. Ćuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE Trans Power Electron., vol. 6, pp. 476-490, 1991.

[16] Q. Ouyang, J. Chen, and C. Xu, "Cell balancing control for serially connected lithium-ion batteries," American Control Conference (ACC), 2016, pp. 3095-3100.

[17] V. C. Nguyen, V. T. Nguyen, M.-D. Ngo, and S.-J. Ahn, "Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series," Energies, vol. 10, pp. 2875-2890, 2021.

[18] Z. B. Omariba, L. Zhang, and D. Sun, "Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles," IEEE Access, vol. 7, pp. 129335-129352, 2019, doi: 10.1109/ACCESS.2019.2940090.




DOI: https://doi.org/10.34238/tnu-jst.12044

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved